A streaming clustering approach using a heterogeneous system for big data analysis

Dajung Lee, Alric Althoff, D. Richmond, R. Kastner
{"title":"A streaming clustering approach using a heterogeneous system for big data analysis","authors":"Dajung Lee, Alric Althoff, D. Richmond, R. Kastner","doi":"10.1109/ICCAD.2017.8203845","DOIUrl":null,"url":null,"abstract":"Data clustering is a fundamental challenge in data analytics. It is the main task in exploratory data mining and a core technique in machine learning. As the volume, variety, velocity, and variability of data grows, we need more efficient data analysis methods that can scale towards increasingly large and high dimensional data sets. We develop a streaming clustering algorithm that is highly amenable to hardware acceleration. Our algorithm eliminates the need to store the data objects, which removes limits on the size of the data that we can analyze. Our algorithm is highly parameterizable, which allows it to fit to the characteristics of the data set, and scale towards the available hardware resources. Our streaming hardware core can handle more than 40 Msamples/s when processing 3-dimensional streaming data and up to 1.78 Msamples/s for 70-dimensional data. To validate the accuracy and performance of our algorithms we compare it with several common clustering techniques on several different applications. The experimental result shows that it outperforms other prior hardware accelerated clustering systems.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"519 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Data clustering is a fundamental challenge in data analytics. It is the main task in exploratory data mining and a core technique in machine learning. As the volume, variety, velocity, and variability of data grows, we need more efficient data analysis methods that can scale towards increasingly large and high dimensional data sets. We develop a streaming clustering algorithm that is highly amenable to hardware acceleration. Our algorithm eliminates the need to store the data objects, which removes limits on the size of the data that we can analyze. Our algorithm is highly parameterizable, which allows it to fit to the characteristics of the data set, and scale towards the available hardware resources. Our streaming hardware core can handle more than 40 Msamples/s when processing 3-dimensional streaming data and up to 1.78 Msamples/s for 70-dimensional data. To validate the accuracy and performance of our algorithms we compare it with several common clustering techniques on several different applications. The experimental result shows that it outperforms other prior hardware accelerated clustering systems.
使用异构系统进行大数据分析的流聚类方法
数据聚类是数据分析中的一个基本挑战。它是探索性数据挖掘的主要任务,也是机器学习的核心技术。随着数据量、种类、速度和可变性的增长,我们需要更有效的数据分析方法,可以扩展到越来越大和高维的数据集。我们开发了一种高度适应硬件加速的流聚类算法。我们的算法消除了存储数据对象的需要,这消除了对我们可以分析的数据大小的限制。我们的算法是高度可参数化的,这使得它能够适应数据集的特征,并向可用的硬件资源扩展。我们的流媒体硬件核心在处理三维流数据时可以处理超过40 Msamples/s,在处理70维数据时可以处理高达1.78 Msamples/s。为了验证我们算法的准确性和性能,我们将其与几种常见的聚类技术在几个不同的应用程序中进行了比较。实验结果表明,该算法优于现有的硬件加速聚类系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信