A New 3D Multi-modality Medical Bone Image Registration Algorithm

Huanjie Tao, Xiaobo Lu
{"title":"A New 3D Multi-modality Medical Bone Image Registration Algorithm","authors":"Huanjie Tao, Xiaobo Lu","doi":"10.1145/3177404.3177427","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) multi-modality medical bone image registration is an important technology in surgical application, especially in large computer-aided orthopedic surgery. To improve registration accuracy, we propose a new 3D multi-modality medical bone image registration algorithm based on local features through analyzing the bone structure. In this method, the image Hessian matrix is introduced for local features extraction, and the local behavior of the 3D bone image is described by the eigenvalues of Hessian matrix. This method can automatically extract and select the most representative feature points (blob-like structure) in different scales. Then we adopt the idea of triangle matching to get stereo matching point pairs. Improve random sample consensus (RANSAC) algorithm is adopted to remove wrong matching point pairs. We use the right matching point pairs to establish rigid transformation model and solve this non-linear model by Levenberg-Marquardt algorithm to get geometric transformation parameters. Simulated experiments and real experiments demonstrate that the proposed method can achieve a high image registration accuracy.","PeriodicalId":133378,"journal":{"name":"Proceedings of the International Conference on Video and Image Processing","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Video and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177404.3177427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Three-dimensional (3D) multi-modality medical bone image registration is an important technology in surgical application, especially in large computer-aided orthopedic surgery. To improve registration accuracy, we propose a new 3D multi-modality medical bone image registration algorithm based on local features through analyzing the bone structure. In this method, the image Hessian matrix is introduced for local features extraction, and the local behavior of the 3D bone image is described by the eigenvalues of Hessian matrix. This method can automatically extract and select the most representative feature points (blob-like structure) in different scales. Then we adopt the idea of triangle matching to get stereo matching point pairs. Improve random sample consensus (RANSAC) algorithm is adopted to remove wrong matching point pairs. We use the right matching point pairs to establish rigid transformation model and solve this non-linear model by Levenberg-Marquardt algorithm to get geometric transformation parameters. Simulated experiments and real experiments demonstrate that the proposed method can achieve a high image registration accuracy.
一种新的三维多模医学骨图像配准算法
三维(3D)多模态医学骨图像配准是外科应用中的一项重要技术,特别是在大型计算机辅助骨科手术中。为了提高配准精度,通过对骨结构的分析,提出了一种基于局部特征的三维医学骨图像配准算法。该方法引入图像Hessian矩阵进行局部特征提取,用Hessian矩阵的特征值描述三维骨骼图像的局部行为。该方法可以自动提取和选择不同尺度下最具代表性的特征点(斑点状结构)。然后采用三角形匹配的思想得到立体匹配点对。采用改进随机样本一致性(RANSAC)算法去除错误匹配点对。利用合适的匹配点对建立刚性变换模型,利用Levenberg-Marquardt算法求解该非线性模型,得到几何变换参数。仿真实验和实际实验表明,该方法能达到较高的图像配准精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信