A Heterogeneity-aware Data Distribution and Rebalance Method in Hadoop Cluster

Yuanquan Fan, Weiguo Wu, Haijun Cao, Huo Zhu, Xu Zhao, Wei Wei
{"title":"A Heterogeneity-aware Data Distribution and Rebalance Method in Hadoop Cluster","authors":"Yuanquan Fan, Weiguo Wu, Haijun Cao, Huo Zhu, Xu Zhao, Wei Wei","doi":"10.1109/ChinaGrid.2012.22","DOIUrl":null,"url":null,"abstract":"The current Hadoop implementation assumes that computing nodes in a cluster are homogeneous. Due to the fact that the input data are split into data blocks with a predefined block size, Hadoop suffers performance degradation during Map phase in heterogeneous cluster. To solve this problem, we propose a heterogeneity-aware data distribution and rebalance method in heterogeneous Hadoop cluster. The method consists of two aspects: 1) performance-aware data distribution, and 2) dynamic data migration. The experimental results indicate that our method can improve the Map performance in heterogeneous cluster. Furthermore, the data locality of the Map task is enhanced as well.","PeriodicalId":371382,"journal":{"name":"2012 Seventh ChinaGrid Annual Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Seventh ChinaGrid Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaGrid.2012.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The current Hadoop implementation assumes that computing nodes in a cluster are homogeneous. Due to the fact that the input data are split into data blocks with a predefined block size, Hadoop suffers performance degradation during Map phase in heterogeneous cluster. To solve this problem, we propose a heterogeneity-aware data distribution and rebalance method in heterogeneous Hadoop cluster. The method consists of two aspects: 1) performance-aware data distribution, and 2) dynamic data migration. The experimental results indicate that our method can improve the Map performance in heterogeneous cluster. Furthermore, the data locality of the Map task is enhanced as well.
Hadoop集群中异构感知的数据分布与再平衡方法
当前的Hadoop实现假设集群中的计算节点是同构的。由于输入数据被分成预定义块大小的数据块,Hadoop在异构集群的Map阶段会出现性能下降。为了解决这一问题,我们提出了一种异构Hadoop集群的异构感知数据分布和再平衡方法。该方法包括两个方面:1)性能感知数据分布和2)动态数据迁移。实验结果表明,该方法可以提高异构集群中的Map性能。此外,Map任务的数据局部性也得到了增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信