CNclustering: Clustering with compatible nucleoids

Renxia Wan, Lixin Wang, Mingjun Wang, Xiaoke Su, Xiaoya Yan
{"title":"CNclustering: Clustering with compatible nucleoids","authors":"Renxia Wan, Lixin Wang, Mingjun Wang, Xiaoke Su, Xiaoya Yan","doi":"10.1109/ICCSE.2009.5228158","DOIUrl":null,"url":null,"abstract":"Dissimilarity measure plays a very important role in traditional data clustering. In this paper, we extend the dissimilarity measure as compatible measure and present a new algorithm (CNclustering) based on this measure. The algorithm is a rigorous partition method, it first gets some compatible clusters with a Compclustering method as the initial nucleoids, then absorbs other objects by the absorbing step to form the final clusters. We use S20 and S200 data sets to demonstrate the clustering performance of the algorithm and get some consistent results.","PeriodicalId":303484,"journal":{"name":"2009 4th International Conference on Computer Science & Education","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Conference on Computer Science & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2009.5228158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Dissimilarity measure plays a very important role in traditional data clustering. In this paper, we extend the dissimilarity measure as compatible measure and present a new algorithm (CNclustering) based on this measure. The algorithm is a rigorous partition method, it first gets some compatible clusters with a Compclustering method as the initial nucleoids, then absorbs other objects by the absorbing step to form the final clusters. We use S20 and S200 data sets to demonstrate the clustering performance of the algorithm and get some consistent results.
聚类:与相容类核聚类
不相似度量在传统的数据聚类中起着非常重要的作用。本文将不相似度测度扩展为兼容测度,并在此基础上提出了一种新的算法(CNclustering)。该算法是一种严格的划分方法,首先用Compclustering方法得到一些兼容的簇作为初始类核,然后通过吸收步骤吸收其他目标形成最终的簇。我们用S20和S200数据集验证了算法的聚类性能,得到了一些一致的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信