Hierarchical Page Eviction Policy for Unified Memory in GPUs

Qi Yu, B. Childers, Libo Huang, Cheng Qian, Zhiying Wang
{"title":"Hierarchical Page Eviction Policy for Unified Memory in GPUs","authors":"Qi Yu, B. Childers, Libo Huang, Cheng Qian, Zhiying Wang","doi":"10.1109/ISPASS.2019.00027","DOIUrl":null,"url":null,"abstract":"The introduction of unified memory in discrete GPUs not only improves programmability but also enables oversubscription. However, it introduces high overhead when page faults occur. Therefore, when GPU memory is full, how to select eviction candidates becomes an important issue. The widely used policy LRU performs poorly for workloads with thrashing access patterns, and the advanced cache replacement policy RRIP incurs thrashing when directly applied to GPU memory. In this paper, we propose hierarchical page eviction policy for GPU memory, which relies on a software-managed page set chain to select eviction candidates. Results show that for 15 selected applications, our policy achieves an average speedup of 1.44 and 1.2 over LRU when the oversubscription rate is 75% and 50 %, respectively.","PeriodicalId":137786,"journal":{"name":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2019.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The introduction of unified memory in discrete GPUs not only improves programmability but also enables oversubscription. However, it introduces high overhead when page faults occur. Therefore, when GPU memory is full, how to select eviction candidates becomes an important issue. The widely used policy LRU performs poorly for workloads with thrashing access patterns, and the advanced cache replacement policy RRIP incurs thrashing when directly applied to GPU memory. In this paper, we propose hierarchical page eviction policy for GPU memory, which relies on a software-managed page set chain to select eviction candidates. Results show that for 15 selected applications, our policy achieves an average speedup of 1.44 and 1.2 over LRU when the oversubscription rate is 75% and 50 %, respectively.
gpu统一内存的分层页面清除策略
在离散gpu中引入统一内存不仅提高了可编程性,而且还实现了超额订阅。但是,当出现页面错误时,它会带来很高的开销。因此,当GPU内存已满时,如何选择驱逐候选对象就成为一个重要的问题。广泛使用的LRU策略对于具有抖动访问模式的工作负载表现不佳,而高级缓存替换策略RRIP直接应用于GPU内存时会导致抖动。在本文中,我们提出了GPU内存的分层页面移除策略,该策略依赖于软件管理的页面集链来选择移除候选对象。结果表明,对于15个选定的应用程序,当超额认购率为75%和50%时,我们的策略分别比LRU实现了1.44和1.2的平均加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信