A methodology to evaluate triple confidence and detect incorrect triples in knowledge bases

Haihua Xie, Xiaoqing Lu, Zhi Tang, Mao Ye
{"title":"A methodology to evaluate triple confidence and detect incorrect triples in knowledge bases","authors":"Haihua Xie, Xiaoqing Lu, Zhi Tang, Mao Ye","doi":"10.1145/2910896.2925456","DOIUrl":null,"url":null,"abstract":"The accuracy of the contents of a knowledge base determines the effectiveness of knowledge service applications, thus, it is necessary to evaluate the confidence of triples when a knowledge base is built. This study introduces a generic computational methodology to compute the confidence values of triples in knowledge bases and detect potentially incorrect ones for further verification. The major contributions of the proposed methodology are as follows: (1) A process to compute the confidence values of triples is designed; (2) New algorithms are proposed to adjust the term frequency and inverse document frequency values of each triple; (3) A method to build a support vector machine (SVM) classifier based on the selected triples used for incorrect triple detection is presented.","PeriodicalId":109613,"journal":{"name":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910896.2925456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The accuracy of the contents of a knowledge base determines the effectiveness of knowledge service applications, thus, it is necessary to evaluate the confidence of triples when a knowledge base is built. This study introduces a generic computational methodology to compute the confidence values of triples in knowledge bases and detect potentially incorrect ones for further verification. The major contributions of the proposed methodology are as follows: (1) A process to compute the confidence values of triples is designed; (2) New algorithms are proposed to adjust the term frequency and inverse document frequency values of each triple; (3) A method to build a support vector machine (SVM) classifier based on the selected triples used for incorrect triple detection is presented.
一种在知识库中评估三重置信度和检测不正确三重的方法
知识库内容的准确性决定了知识服务应用的有效性,因此在构建知识库时需要对三元组的置信度进行评估。本研究引入了一种通用的计算方法来计算知识库中三元组的置信度值,并检测潜在的不正确值以供进一步验证。该方法的主要贡献如下:(1)设计了一个计算三元组置信值的过程;(2)提出了调整每个三元组的词频和逆文档频率值的新算法;(3)提出了一种基于所选三元组构建支持向量机分类器的方法,用于错误三元组检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信