Caffe2C: A Framework for Easy Implementation of CNN-based Mobile Applications

Ryosuke Tanno, Keiji Yanai
{"title":"Caffe2C: A Framework for Easy Implementation of CNN-based Mobile Applications","authors":"Ryosuke Tanno, Keiji Yanai","doi":"10.1145/3004010.3004025","DOIUrl":null,"url":null,"abstract":"In this study, we create \"Caffe2C\" which converts CNN (Convolutional Neural Network) models trained with the existing CNN framework, Caffe, C-language source codes for mobile devices. Since Caffe2C generates a single C code which includes everything needed to execute the trained CNN, csCaffe2C makes it easy to run CNN-based applications on any kinds of mobile devices and embedding devices without GPUs. Moreover, Caffe2C achieves faster execution speed compared to the existing Caffe for iOS/Android and the OpenCV iOS/Android DNN class. The reasons are as follows: (1) directly converting of trained CNN models to C codes, (2) efficient use of NEON/BLAS with multithreading, and (3) performing pre-computation as much as possible in the computation of CNNs. In addition, in this paper, we demonstrate the availability of Caffe2C by showing four kinds of CNN-base object recognition mobile applications.","PeriodicalId":406787,"journal":{"name":"Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services","volume":"455 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3004010.3004025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this study, we create "Caffe2C" which converts CNN (Convolutional Neural Network) models trained with the existing CNN framework, Caffe, C-language source codes for mobile devices. Since Caffe2C generates a single C code which includes everything needed to execute the trained CNN, csCaffe2C makes it easy to run CNN-based applications on any kinds of mobile devices and embedding devices without GPUs. Moreover, Caffe2C achieves faster execution speed compared to the existing Caffe for iOS/Android and the OpenCV iOS/Android DNN class. The reasons are as follows: (1) directly converting of trained CNN models to C codes, (2) efficient use of NEON/BLAS with multithreading, and (3) performing pre-computation as much as possible in the computation of CNNs. In addition, in this paper, we demonstrate the availability of Caffe2C by showing four kinds of CNN-base object recognition mobile applications.
Caffe2C:一个简单实现基于cnn的移动应用程序的框架
在这项研究中,我们创建了“Caffe2C”,它将CNN(卷积神经网络)模型与现有的CNN框架、Caffe、移动设备的c语言源代码进行转换。由于Caffe2C生成单个C代码,其中包含执行训练后的CNN所需的所有内容,因此csCaffe2C可以轻松地在任何类型的移动设备和嵌入式设备上运行基于CNN的应用程序,而无需gpu。此外,与现有的iOS/Android Caffe和OpenCV iOS/Android DNN类相比,Caffe2C实现了更快的执行速度。原因如下:(1)将训练好的CNN模型直接转换为C代码;(2)高效地使用NEON/BLAS多线程;(3)在CNN的计算中尽可能多地进行预计算。此外,在本文中,我们通过展示四种基于cnn的物体识别移动应用来证明Caffe2C的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信