Elastic and effective spatio-temporal query processing scheme on Hadoop

Yunqin Zhong, Xiaomin Zhu, Jinyun Fang
{"title":"Elastic and effective spatio-temporal query processing scheme on Hadoop","authors":"Yunqin Zhong, Xiaomin Zhu, Jinyun Fang","doi":"10.1145/2447481.2447486","DOIUrl":null,"url":null,"abstract":"Geospatial applications have become prevalent in both scientific research and industry. Spatio-Temporal query processing is a fundamental issue for driving geospatial applications. However, the state-of-the-art spatio-temporal query processing methods are facing significant challenges as the data expand and concurrent users increase. In this paper we present a novel spatio-temporal querying scheme to provide efficient query processing over big geospatial data. The scheme improves query efficiency from three facets. Firstly, taking geographic proximity and storage locality into consideration, we propose a geospatial data organization approach to achieve high aggregate I/O throughput, and design a distributed indexing framework for efficient pruning of the search space. Furthermore, we design an indexing plus MapReduce query processing architecture to improve data retrieval efficiency and query computation efficiency. In addition, we design distributed caching model to accelerate the access response of hotspot spatial objects. We evaluate the effectiveness of our scheme with comprehensive experiments using real datasets and application scenarios.","PeriodicalId":416086,"journal":{"name":"International Workshop on Analytics for Big Geospatial Data","volume":"701 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Analytics for Big Geospatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2447481.2447486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Geospatial applications have become prevalent in both scientific research and industry. Spatio-Temporal query processing is a fundamental issue for driving geospatial applications. However, the state-of-the-art spatio-temporal query processing methods are facing significant challenges as the data expand and concurrent users increase. In this paper we present a novel spatio-temporal querying scheme to provide efficient query processing over big geospatial data. The scheme improves query efficiency from three facets. Firstly, taking geographic proximity and storage locality into consideration, we propose a geospatial data organization approach to achieve high aggregate I/O throughput, and design a distributed indexing framework for efficient pruning of the search space. Furthermore, we design an indexing plus MapReduce query processing architecture to improve data retrieval efficiency and query computation efficiency. In addition, we design distributed caching model to accelerate the access response of hotspot spatial objects. We evaluate the effectiveness of our scheme with comprehensive experiments using real datasets and application scenarios.
基于Hadoop的灵活有效的时空查询处理方案
地理空间应用在科学研究和工业中都很普遍。时空查询处理是驱动地理空间应用的一个基本问题。然而,随着数据量的增长和并发用户的增加,现有的时空查询处理方法面临着巨大的挑战。本文提出了一种新的时空查询方案,以提供对大地理空间数据的高效查询处理。该方案从三个方面提高了查询效率。首先,考虑地理邻近性和存储局地性,提出了一种地理空间数据组织方法,以实现高聚合I/O吞吐量,并设计了分布式索引框架,对搜索空间进行高效修剪。此外,我们还设计了索引+ MapReduce的查询处理架构,以提高数据检索效率和查询计算效率。此外,我们还设计了分布式缓存模型来加速热点空间对象的访问响应。通过实际数据集和应用场景的综合实验,评估了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信