Associative learning on phase change photonics

Y. S. T. James, Zengguang Cheng, J. Feldmann, Xuan Li, N. Youngblood, U. E. Ali, C. Wright, W. Pernice, H. Bhaskaran
{"title":"Associative learning on phase change photonics","authors":"Y. S. T. James, Zengguang Cheng, J. Feldmann, Xuan Li, N. Youngblood, U. E. Ali, C. Wright, W. Pernice, H. Bhaskaran","doi":"10.1117/12.2593248","DOIUrl":null,"url":null,"abstract":"Associative learning as a building block for machine learning network is a largely unexplored area. We present in this paper our results on the demonstration of an all optical associative learning element, realized on an integrated photonic platform using phase change materials combined with on-chip cascaded directional couplers. We implement the framework on our optical on-chip associative learning network, and experimentally demonstrate image classification on a publicly-accessible cat-dog dataset. The experimental implementation harnesses optical wavelength division-multiplexing, thus increasing the information channel capacity to process our machine learning task. Our unconventional approach to machine learning demonstrated experimentally on an optical platform could potentially open up new research possibilities in machine learning hardware architectures and algorithms.","PeriodicalId":112265,"journal":{"name":"Active Photonic Platforms XIII","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active Photonic Platforms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Associative learning as a building block for machine learning network is a largely unexplored area. We present in this paper our results on the demonstration of an all optical associative learning element, realized on an integrated photonic platform using phase change materials combined with on-chip cascaded directional couplers. We implement the framework on our optical on-chip associative learning network, and experimentally demonstrate image classification on a publicly-accessible cat-dog dataset. The experimental implementation harnesses optical wavelength division-multiplexing, thus increasing the information channel capacity to process our machine learning task. Our unconventional approach to machine learning demonstrated experimentally on an optical platform could potentially open up new research possibilities in machine learning hardware architectures and algorithms.
相变光子学的联想学习
联想学习作为机器学习网络的构建模块,在很大程度上是一个未开发的领域。在本文中,我们展示了一种全光学联想学习元件的演示结果,该元件在集成光子平台上使用相变材料结合片上级联定向耦合器实现。我们在我们的光学片上关联学习网络上实现了该框架,并在一个公开访问的猫狗数据集上实验演示了图像分类。实验实现利用光波分复用,从而增加信息通道容量来处理我们的机器学习任务。我们在光学平台上通过实验证明了机器学习的非常规方法,这可能会为机器学习硬件架构和算法的研究开辟新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信