Md. Wasi-ur-Rahman, Nusrat S. Islam, Xiaoyi Lu, D. Shankar, D. Panda
{"title":"MR-Advisor: A Comprehensive Tuning Tool for Advising HPC Users to Accelerate MapReduce Applications on Supercomputers","authors":"Md. Wasi-ur-Rahman, Nusrat S. Islam, Xiaoyi Lu, D. Shankar, D. Panda","doi":"10.1109/SBAC-PAD.2016.33","DOIUrl":null,"url":null,"abstract":"MapReduce is the most popular parallel computing framework for big data processing which allows massive scalability across distributed computing environment. Advanced RDMA-based design of Hadoop MapReduce has been proposed that alleviates the performance bottlenecks in default Hadoop MapReduce by leveraging the benefits from RDMA. On the other hand, data processing engine, Spark, provides fast execution of MapReduce applications through in-memory processing. Performance optimization for these contemporary big data processing frameworks on modern High-Performance Computing (HPC) systems is a formidable task because of the numerous configuration possibilities in each of them. In this paper, we propose MR-Advisor, a comprehensive tuning tool for MapReduce. MR-Advisor is generalized to provide performance optimizations for Hadoop, Spark, and RDMA-enhanced Hadoop MapReduce designs over different file systems such as HDFS, Lustre, and Tachyon. Performance evaluations reveal that, with MR-Advisor's suggested values, the job execution performance can be enhanced by a maximum of 58% over the current best-practice values for user-level configuration parameters. To the best of our knowledge, this is the first tool that supports tuning for both Apache Hadoop and Spark, as well as the RDMA and Lustre-based advanced designs.","PeriodicalId":361160,"journal":{"name":"2016 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2016.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
MapReduce is the most popular parallel computing framework for big data processing which allows massive scalability across distributed computing environment. Advanced RDMA-based design of Hadoop MapReduce has been proposed that alleviates the performance bottlenecks in default Hadoop MapReduce by leveraging the benefits from RDMA. On the other hand, data processing engine, Spark, provides fast execution of MapReduce applications through in-memory processing. Performance optimization for these contemporary big data processing frameworks on modern High-Performance Computing (HPC) systems is a formidable task because of the numerous configuration possibilities in each of them. In this paper, we propose MR-Advisor, a comprehensive tuning tool for MapReduce. MR-Advisor is generalized to provide performance optimizations for Hadoop, Spark, and RDMA-enhanced Hadoop MapReduce designs over different file systems such as HDFS, Lustre, and Tachyon. Performance evaluations reveal that, with MR-Advisor's suggested values, the job execution performance can be enhanced by a maximum of 58% over the current best-practice values for user-level configuration parameters. To the best of our knowledge, this is the first tool that supports tuning for both Apache Hadoop and Spark, as well as the RDMA and Lustre-based advanced designs.