On Normals and Projection Operators for Surfaces Defined by Point Sets

M. Alexa, A. Adamson
{"title":"On Normals and Projection Operators for Surfaces Defined by Point Sets","authors":"M. Alexa, A. Adamson","doi":"10.2312/SPBG/SPBG04/149-155","DOIUrl":null,"url":null,"abstract":"Levin's MLS projection operator allows defining a surface from a set of points and represents a versatile procedure to generate points on this surface. Practical problems of MLS surfaces are a complicated non-linear optimization to compute a tangent frame and the (commonly overlooked) fact that the normal to this tangent frame is not the surface normal. An alternative definition of Point Set Surfaces, inspired by the MLS projection, is the implicit surface version of Adamson & Alexa.We use this surface definition to show how to compute exact surface normals and present simple, efficient projection operators. The exact normal computation also allows computing orthogonal projections.","PeriodicalId":136739,"journal":{"name":"Symposium on Point Based Graphics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"152","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Point Based Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/SPBG/SPBG04/149-155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 152

Abstract

Levin's MLS projection operator allows defining a surface from a set of points and represents a versatile procedure to generate points on this surface. Practical problems of MLS surfaces are a complicated non-linear optimization to compute a tangent frame and the (commonly overlooked) fact that the normal to this tangent frame is not the surface normal. An alternative definition of Point Set Surfaces, inspired by the MLS projection, is the implicit surface version of Adamson & Alexa.We use this surface definition to show how to compute exact surface normals and present simple, efficient projection operators. The exact normal computation also allows computing orthogonal projections.
点集定义曲面的法线和投影算子
Levin的MLS投影算子允许从一组点定义一个表面,并代表了一个在这个表面上生成点的通用过程。MLS曲面的实际问题是计算切线框架的复杂非线性优化,以及该切线框架的法线不是曲面法线的事实(通常被忽视)。点集曲面的另一种定义,受到MLS投影的启发,是Adamson & Alexa的隐式曲面版本。我们使用这个曲面定义来展示如何计算精确的曲面法线,并给出简单、有效的投影算子。精确的正常计算也允许计算正交投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信