S. Sonmezoglu, H. D. Gavcar, K. Azgın, S. E. Alper, T. Akin
{"title":"Simultaneous detection of linear and coriolis accelerations on a mode-matched MEMS gyroscope","authors":"S. Sonmezoglu, H. D. Gavcar, K. Azgın, S. E. Alper, T. Akin","doi":"10.1109/MEMSYS.2014.6765566","DOIUrl":null,"url":null,"abstract":"This paper presents a novel “in operation acceleration sensing and compensation method” for a single-mass mode-matched MEMS gyroscope. In this method, the amplitudes of the sustained residual quadrature signals on the differential sense-mode electrodes are compared to measure the linear acceleration acting on the sense-axis of the gyroscope. By measuring the acceleration acting along the sense-axis, the g-sensitivity of the gyroscope output to these accelerations is mitigated without using a dedicated accelerometer. It has been experimentally demonstrated that the g-sensitivity of the studied gyroscope is substantially reduced from 1.08°/s/g to 0.04°/s/g, and the effect of the linear acceleration on the gyroscope output is highly-suppressed (by 96%) with the use of the compensation method proposed in this work.","PeriodicalId":312056,"journal":{"name":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2014.6765566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper presents a novel “in operation acceleration sensing and compensation method” for a single-mass mode-matched MEMS gyroscope. In this method, the amplitudes of the sustained residual quadrature signals on the differential sense-mode electrodes are compared to measure the linear acceleration acting on the sense-axis of the gyroscope. By measuring the acceleration acting along the sense-axis, the g-sensitivity of the gyroscope output to these accelerations is mitigated without using a dedicated accelerometer. It has been experimentally demonstrated that the g-sensitivity of the studied gyroscope is substantially reduced from 1.08°/s/g to 0.04°/s/g, and the effect of the linear acceleration on the gyroscope output is highly-suppressed (by 96%) with the use of the compensation method proposed in this work.