QoS Driven Channel Selection Algorithm for Opportunistic Spectrum Access

Navikkumar Modi, P. Mary, C. Moy
{"title":"QoS Driven Channel Selection Algorithm for Opportunistic Spectrum Access","authors":"Navikkumar Modi, P. Mary, C. Moy","doi":"10.1109/GLOCOMW.2015.7413996","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel machine learning algorithm called quality of service upper confidence bound (QoS-UCB) for the opportunistic spectrum access (OSA) scenario. The proposed algorithm selects an optimal channel in terms of occupancy and quality, e.g. signal to noise ratio (SNR) for transmission. It allows secondary users (SU) to learn the spectrum not only on the vacancy point of view but also on the expected transmission quality by selecting two distinguishable exploration coefficients. Our contribution is threefold: i) We propose a new learning algorithm achieving optimal trade-off between exploration and exploitation when OSA scenario is modeled as a Markov multi-armed bandit (MAB) problem. ii) We state that under mild conditions on the state transition probabilities of Markov chains, the regret of the QoS-UCB policy behaves logarithmically over time. iii) We numerically compare our scheme with an existing UCB1 in OSA context and also show that QoS-UCB outperforms traditional UCB1 in terms of regret.","PeriodicalId":315934,"journal":{"name":"2015 IEEE Globecom Workshops (GC Wkshps)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2015.7413996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we propose a novel machine learning algorithm called quality of service upper confidence bound (QoS-UCB) for the opportunistic spectrum access (OSA) scenario. The proposed algorithm selects an optimal channel in terms of occupancy and quality, e.g. signal to noise ratio (SNR) for transmission. It allows secondary users (SU) to learn the spectrum not only on the vacancy point of view but also on the expected transmission quality by selecting two distinguishable exploration coefficients. Our contribution is threefold: i) We propose a new learning algorithm achieving optimal trade-off between exploration and exploitation when OSA scenario is modeled as a Markov multi-armed bandit (MAB) problem. ii) We state that under mild conditions on the state transition probabilities of Markov chains, the regret of the QoS-UCB policy behaves logarithmically over time. iii) We numerically compare our scheme with an existing UCB1 in OSA context and also show that QoS-UCB outperforms traditional UCB1 in terms of regret.
机会频谱接入的QoS驱动信道选择算法
在本文中,我们提出了一种新的机器学习算法,称为服务质量上置信度界(QoS-UCB),用于机会频谱接入(OSA)场景。该算法根据信道占用率和信道质量(如信噪比)选择最优信道进行传输。通过选择两个可区分的探测系数,二级用户不仅可以从空位的角度了解频谱,还可以从预期传输质量的角度了解频谱。我们的贡献有三个方面:i)我们提出了一种新的学习算法,当OSA场景被建模为马尔可夫多臂强盗(MAB)问题时,我们实现了探索和开发之间的最佳权衡。ii)在马尔可夫链状态转移概率的温和条件下,QoS-UCB策略的后悔率随时间呈对数变化。iii)我们将我们的方案与OSA背景下现有的UCB1进行了数值比较,并表明QoS-UCB在遗憾度方面优于传统的UCB1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信