Computing the proximity operator of the ℓp norm with 0 < p < 1

Feishe Chen, Lixin Shen, B. Suter
{"title":"Computing the proximity operator of the ℓp norm with 0 < p < 1","authors":"Feishe Chen, Lixin Shen, B. Suter","doi":"10.1049/iet-spr.2015.0244","DOIUrl":null,"url":null,"abstract":"Sparse modelling with the l p norm of 0 ≤ p ≤ 1 requires the availability of the proximity operator of the l p norm. The proximity operators of the l0 and l1 norms are the well-known hard- and soft-thresholding estimators, respectively. In this study, the authors give a complete study on the properties of the proximity operator of the l p norm. Based on these properties, explicit formulas of the proximity operators of the l1/2 norm and l2/3 norm are derived with simple proofs; for other values of p, an iterative Newton's method is developed to compute the proximity operator of the l p norm by fully exploring the available proximity operators of the l0, l1/2, l2/3, and l1 norms. As applications, the proximity operator of the l p norm with 0 ≤ p ≤ 1 is applied to the l p -regularisation for compressive sensing and image restoration.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2015.0244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Sparse modelling with the l p norm of 0 ≤ p ≤ 1 requires the availability of the proximity operator of the l p norm. The proximity operators of the l0 and l1 norms are the well-known hard- and soft-thresholding estimators, respectively. In this study, the authors give a complete study on the properties of the proximity operator of the l p norm. Based on these properties, explicit formulas of the proximity operators of the l1/2 norm and l2/3 norm are derived with simple proofs; for other values of p, an iterative Newton's method is developed to compute the proximity operator of the l p norm by fully exploring the available proximity operators of the l0, l1/2, l2/3, and l1 norms. As applications, the proximity operator of the l p norm with 0 ≤ p ≤ 1 is applied to the l p -regularisation for compressive sensing and image restoration.
计算0 < p < 1的p范数的接近算子
l p范数为0≤p≤1的稀疏建模要求l p范数的邻近算子的可用性。10范数和l1范数的接近算子分别是众所周知的硬阈值估计和软阈值估计。本文对l p范数的接近算子的性质进行了较为全面的研究。基于这些性质,导出了l1/2范数和l2/3范数的邻近算子的显式公式,并给出了简单的证明;对于p的其他值,通过充分探索10、l1/2、l2/3和l1范数的可用接近算子,开发了迭代牛顿法来计算l1范数的接近算子。作为应用,将l p范数0≤p≤1的接近算子应用于l p -正则化压缩感知和图像恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信