Multiplicative Schwartz-Type Block Multi-Color Gauss-Seidel Smoother for Algebraic Multigrid Methods

Masatoshi Kawai, Akihiro Ida, Hiroya Matsuba, K. Nakajima, M. Bolten
{"title":"Multiplicative Schwartz-Type Block Multi-Color Gauss-Seidel Smoother for Algebraic Multigrid Methods","authors":"Masatoshi Kawai, Akihiro Ida, Hiroya Matsuba, K. Nakajima, M. Bolten","doi":"10.1145/3368474.3368481","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multiplicative Schwartz-type block multi-color Gauss-Seidel (MS-BMC-GS) smoother for algebraic multigrid (AMG) methods. AMG is an excellent solver and one of the most effective preconditioners for Krylov subspace methods such as the conjugate gradient method. The achievable degree of parallelism, convergence ratio, and computational cost of AMG strongly depend on the chosen smoother. As multiple unknowns are relaxed simultaneously, the MS-BMC-GS smoother realizes higher convergence than the existing parallel Gauss-Seidel smoother. Although this increases the amount of computation, the increase in the computational time is mitigated by the high cache hit ratio owing to the novel blocking technique. Numerical experiments demonstrate that MS-BMC-GS outperforms the block multi-color GS smoother by 18%.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3368474.3368481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a multiplicative Schwartz-type block multi-color Gauss-Seidel (MS-BMC-GS) smoother for algebraic multigrid (AMG) methods. AMG is an excellent solver and one of the most effective preconditioners for Krylov subspace methods such as the conjugate gradient method. The achievable degree of parallelism, convergence ratio, and computational cost of AMG strongly depend on the chosen smoother. As multiple unknowns are relaxed simultaneously, the MS-BMC-GS smoother realizes higher convergence than the existing parallel Gauss-Seidel smoother. Although this increases the amount of computation, the increase in the computational time is mitigated by the high cache hit ratio owing to the novel blocking technique. Numerical experiments demonstrate that MS-BMC-GS outperforms the block multi-color GS smoother by 18%.
代数多重网格方法的乘法Schwartz-Type块多色Gauss-Seidel光滑
本文提出了一种用于代数多网格(AMG)方法的乘法schwartz型块多色Gauss-Seidel (MS-BMC-GS)光滑器。AMG是求解共轭梯度法等Krylov子空间方法最有效的前提条件之一。AMG可实现的并行度、收敛率和计算成本在很大程度上取决于所选择的平滑度。由于多个未知数同时松弛,MS-BMC-GS平滑比现有的并行高斯-塞德尔平滑具有更高的收敛性。虽然这增加了计算量,但由于采用了新的阻塞技术,缓存命中率很高,从而减轻了计算时间的增加。数值实验表明,MS-BMC-GS平滑度比块多色GS平滑度高18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信