T. Shen, A. R. Dhaini, Shuang Yin, Benjamin A. Detwiler, M. D. Leenheer, L. Kazovsky
{"title":"The Stanford UltraFlow access: Architecture and hierarchical scheduling","authors":"T. Shen, A. R. Dhaini, Shuang Yin, Benjamin A. Detwiler, M. D. Leenheer, L. Kazovsky","doi":"10.1109/GLOCOM.2013.6831479","DOIUrl":null,"url":null,"abstract":"UltraFlow - also known as Optical Flow Switching (OFS) has been recently presented as an effective technology for large Internet data transfer. In this paper, we propose a novel scheduling mechanism for the Stanford UltraFlow access network, a novel optical access network architecture that offers dual-mode service to the end-users: legacy IP and OFS. The proposed scheme is a hybrid mechanism that combines the batch scheduling technique with existing methods so as to increase the average Flow throughput, while maintaining relatively low traffic latency. Extensive simulations highlight the advantages of the proposed solution and demonstrate its merits.","PeriodicalId":233798,"journal":{"name":"2013 IEEE Global Communications Conference (GLOBECOM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2013.6831479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
UltraFlow - also known as Optical Flow Switching (OFS) has been recently presented as an effective technology for large Internet data transfer. In this paper, we propose a novel scheduling mechanism for the Stanford UltraFlow access network, a novel optical access network architecture that offers dual-mode service to the end-users: legacy IP and OFS. The proposed scheme is a hybrid mechanism that combines the batch scheduling technique with existing methods so as to increase the average Flow throughput, while maintaining relatively low traffic latency. Extensive simulations highlight the advantages of the proposed solution and demonstrate its merits.