An analysis of self-organization process for data classification in multisensor systems

S. Przylucki, W. Wójcik, K. Plachecki, T. Golec
{"title":"An analysis of self-organization process for data classification in multisensor systems","authors":"S. Przylucki, W. Wójcik, K. Plachecki, T. Golec","doi":"10.1117/12.517138","DOIUrl":null,"url":null,"abstract":"In this paper we present the idea of the optoelectronic measurement system for monitoring the industrial gas pollutants. The system consists of an optical detection system, an optical fiber as a data transmission link, a spectrometer with linear diode array and a neural network unit for real-time spectral data processing. We paid main attention to the neural network structure and its properties for gas recognition and gas concentration estimation task. The article presents the new classification algorithm based on the selforganizing artificial neural network. The algorithm comes from the kohonen selforganizing neural net idea. It introduces the groups of winners and that is why, we call it Multi-Winners Selforganizing Kohonen Map - MWSOM. The behavior and fundamental featured of that classifier are presented and verified by comparison to other 'classical' classification algorithms.","PeriodicalId":405495,"journal":{"name":"Optoelectronic and Electronic Sensors","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optoelectronic and Electronic Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.517138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we present the idea of the optoelectronic measurement system for monitoring the industrial gas pollutants. The system consists of an optical detection system, an optical fiber as a data transmission link, a spectrometer with linear diode array and a neural network unit for real-time spectral data processing. We paid main attention to the neural network structure and its properties for gas recognition and gas concentration estimation task. The article presents the new classification algorithm based on the selforganizing artificial neural network. The algorithm comes from the kohonen selforganizing neural net idea. It introduces the groups of winners and that is why, we call it Multi-Winners Selforganizing Kohonen Map - MWSOM. The behavior and fundamental featured of that classifier are presented and verified by comparison to other 'classical' classification algorithms.
多传感器系统数据分类的自组织过程分析
本文提出了一种用于工业气体污染物监测的光电测量系统。该系统由光检测系统、作为数据传输链路的光纤、线性二极管阵列光谱仪和用于实时光谱数据处理的神经网络单元组成。我们主要研究了气体识别和气体浓度估计任务中的神经网络结构及其性质。本文提出了一种新的基于自组织神经网络的分类算法。该算法来源于kohonen自组织神经网络思想。它介绍了赢家的群体,这就是为什么我们称之为多赢家自组织Kohonen地图- MWSOM。通过与其他“经典”分类算法的比较,提出并验证了该分类器的行为和基本特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信