Hongbing Zeng, Shenping Xiao, Chang-Fan Zhang, Gang Chen
{"title":"Further results on passivity analysis of neural networks with time-varying delay","authors":"Hongbing Zeng, Shenping Xiao, Chang-Fan Zhang, Gang Chen","doi":"10.1109/CCDC.2014.6852137","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of passivity analysis for neural networks with both time-varying delay and norm-bounded parameter uncertainties. By further utilizing the information of activation function and employing a reciprocally convex approach to consider the relationship between the time-varying delay and its time-varying interval, some improved delay-dependent passivity conditions are obtained, which are formulated in terms of linear matrix inequalities (LMIs) and can be readily solved by existing convex optimization algorithms. Finally, a numerical example is provided to verify the effectiveness of the proposed techniques.","PeriodicalId":380818,"journal":{"name":"The 26th Chinese Control and Decision Conference (2014 CCDC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 26th Chinese Control and Decision Conference (2014 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2014.6852137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper deals with the problem of passivity analysis for neural networks with both time-varying delay and norm-bounded parameter uncertainties. By further utilizing the information of activation function and employing a reciprocally convex approach to consider the relationship between the time-varying delay and its time-varying interval, some improved delay-dependent passivity conditions are obtained, which are formulated in terms of linear matrix inequalities (LMIs) and can be readily solved by existing convex optimization algorithms. Finally, a numerical example is provided to verify the effectiveness of the proposed techniques.