United We Stand, Divided We Fall: Leveraging Ensembles of Recommenders to Compete with Budget Constrained Resources

Pietro Maldini, Alessandro Sanvito, Mattia Surricchio
{"title":"United We Stand, Divided We Fall: Leveraging Ensembles of Recommenders to Compete with Budget Constrained Resources","authors":"Pietro Maldini, Alessandro Sanvito, Mattia Surricchio","doi":"10.1145/3556702.3556845","DOIUrl":null,"url":null,"abstract":"In this paper we provide an overview of the approach we used as team Surricchi1 for the ACM RecSys Challenge 20221. The competition, sponsored and organized by Dressipi, involves a typical session-based recommendation task in the fashion industry domain. Our proposed method2 leverages an ensemble of multiple recommenders selected to capture diverse facets of the input data. Such a modular approach allowed our team to achieve competitive results with a score of 0.1994 Mean Reciprocal Rank at 100 (∼ 7.6% less than the first qualified team). We obtained this result by leveraging only publicly and freely available computational resources 3 and our own laptops. Part of the merit also lies in the size of this year’s dataset (∼ 5 million data points), which democratized the challenge to a larger public and allowed us to join the challenge as independent researchers.","PeriodicalId":141185,"journal":{"name":"Proceedings of the Recommender Systems Challenge 2022","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Recommender Systems Challenge 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556702.3556845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we provide an overview of the approach we used as team Surricchi1 for the ACM RecSys Challenge 20221. The competition, sponsored and organized by Dressipi, involves a typical session-based recommendation task in the fashion industry domain. Our proposed method2 leverages an ensemble of multiple recommenders selected to capture diverse facets of the input data. Such a modular approach allowed our team to achieve competitive results with a score of 0.1994 Mean Reciprocal Rank at 100 (∼ 7.6% less than the first qualified team). We obtained this result by leveraging only publicly and freely available computational resources 3 and our own laptops. Part of the merit also lies in the size of this year’s dataset (∼ 5 million data points), which democratized the challenge to a larger public and allowed us to join the challenge as independent researchers.
团结则存,分裂则亡:利用推荐团队与预算有限的资源竞争
在本文中,我们概述了我们作为Surricchi1团队在ACM RecSys挑战赛20221中使用的方法。该比赛由Dressipi赞助和组织,涉及时尚行业领域典型的基于会话的推荐任务。我们提出的方法2利用选择的多个推荐器的集合来捕获输入数据的不同方面。这种模块化方法使我们的团队取得了0.1994的平均倒数排名为100(比第一个合格团队低7.6%)的竞争成绩。我们仅通过利用公开和免费可用的计算资源3和我们自己的笔记本电脑获得了这个结果。部分优点还在于今年数据集的规模(约500万个数据点),这使挑战向更大的公众民主化,并允许我们作为独立研究人员加入挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信