Boosting-Based Relevance Feedback for CBIR

Jasman Pardede, B. Sitohang, Saiful Akbar, M. L. Khodra
{"title":"Boosting-Based Relevance Feedback for CBIR","authors":"Jasman Pardede, B. Sitohang, Saiful Akbar, M. L. Khodra","doi":"10.1109/ICODSE.2018.8705854","DOIUrl":null,"url":null,"abstract":"In this research, we implemented Boosting-based Relevance Feedback (BRF) technique for Content-Based Image Retrieval (CBIR) system. The BRF technique follows two stages. In the first stage, the system returns the results of image retrieval based on the dissimilarity measure using Jeffrey Divergence with threshold 0.15. In the second stage, the system returns the results of the image retrieval based on the prediction of the BRF model which is generated based on the user's feedback image. With the same procedure, every feedback generates a BRF model that corresponds to the user's feedback images. In this study, we compare existing three Boosting algorithms, i.e.: AdaBoost, Gradient Boosting, and XGBoost. We consider the performance of application from precision, recall, F-measure, and accuracy value. The best BRF technique is XGBoost on fourth feedback, based on the results of experiments that conducted on the Wang Dataset. The BRF technique using XGBoost enhances the average precision value by 18.82%, the average recall value amount 173.32%, the average F-measure value amount 94.97%, and the average accuracy value amount 4.15% compared with the baseline. The BRF technique using XGBoost achieves the best performance on both the average recall and F-measure value compared to the most recent methods.","PeriodicalId":362422,"journal":{"name":"2018 5th International Conference on Data and Software Engineering (ICoDSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2018.8705854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this research, we implemented Boosting-based Relevance Feedback (BRF) technique for Content-Based Image Retrieval (CBIR) system. The BRF technique follows two stages. In the first stage, the system returns the results of image retrieval based on the dissimilarity measure using Jeffrey Divergence with threshold 0.15. In the second stage, the system returns the results of the image retrieval based on the prediction of the BRF model which is generated based on the user's feedback image. With the same procedure, every feedback generates a BRF model that corresponds to the user's feedback images. In this study, we compare existing three Boosting algorithms, i.e.: AdaBoost, Gradient Boosting, and XGBoost. We consider the performance of application from precision, recall, F-measure, and accuracy value. The best BRF technique is XGBoost on fourth feedback, based on the results of experiments that conducted on the Wang Dataset. The BRF technique using XGBoost enhances the average precision value by 18.82%, the average recall value amount 173.32%, the average F-measure value amount 94.97%, and the average accuracy value amount 4.15% compared with the baseline. The BRF technique using XGBoost achieves the best performance on both the average recall and F-measure value compared to the most recent methods.
基于增强的CBIR相关反馈
在本研究中,我们为基于内容的图像检索(CBIR)系统实现了基于增强的相关反馈(BRF)技术。BRF技术分为两个阶段。在第一阶段,系统返回基于不同度度量的图像检索结果,使用阈值为0.15的Jeffrey Divergence。第二阶段,系统根据用户反馈图像生成的BRF模型的预测,返回图像检索结果。通过同样的过程,每个反馈都会生成一个与用户反馈图像对应的BRF模型。在本研究中,我们比较了现有的三种boost算法,即AdaBoost, Gradient Boosting和XGBoost。我们从查全率、查全率、f值和查全率四个方面来考虑应用程序的性能。基于在Wang数据集上进行的实验结果,最好的BRF技术是第四次反馈的XGBoost。使用XGBoost的BRF技术与基线相比,平均精密度值提高了18.82%,平均召回量增加了173.32%,平均f测量值增加了94.97%,平均准确度增加了4.15%。与最新的方法相比,使用XGBoost的BRF技术在平均召回率和f测量值方面都达到了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信