{"title":"Markov Quantal Response Equilibrium and a Homotopy Method for Computing and Selecting Markov Perfect Equilibria of Dynamic Stochastic Games","authors":"Steffen Eibelshäuser, David Poensgen","doi":"10.2139/ssrn.3314404","DOIUrl":null,"url":null,"abstract":"We formally define Markov quantal response equilibrium (QRE) and prove existence for all finite discounted dynamic stochastic games. The special case of logit Markov QRE constitutes a mapping from precision parameter λ to sets of logit Markov QRE. The limiting points of this correspondence are shown to be Markov perfect equilibria. Furthermore, the logit Markov QRE correspondence can be given a homotopy interpretation. We prove that for all games, this homotopy contains a branch connecting the unique solution at λ = 0 to a unique limiting Markov perfect equilibrium. This result can be leveraged both for the computation of Markov perfect equilibria, and also as a selection criterion.","PeriodicalId":373527,"journal":{"name":"PSN: Game Theory (Topic)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Game Theory (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3314404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We formally define Markov quantal response equilibrium (QRE) and prove existence for all finite discounted dynamic stochastic games. The special case of logit Markov QRE constitutes a mapping from precision parameter λ to sets of logit Markov QRE. The limiting points of this correspondence are shown to be Markov perfect equilibria. Furthermore, the logit Markov QRE correspondence can be given a homotopy interpretation. We prove that for all games, this homotopy contains a branch connecting the unique solution at λ = 0 to a unique limiting Markov perfect equilibrium. This result can be leveraged both for the computation of Markov perfect equilibria, and also as a selection criterion.