Configurable computing solutions for automatic target recognition

J. Villasenor, B. Schoner, Kang-Ngee Chia, C. Zapata, Hea Joung Kim, Christopher R. Jones, Shane Lansing, B. Mangione-Smith
{"title":"Configurable computing solutions for automatic target recognition","authors":"J. Villasenor, B. Schoner, Kang-Ngee Chia, C. Zapata, Hea Joung Kim, Christopher R. Jones, Shane Lansing, B. Mangione-Smith","doi":"10.1109/FPGA.1996.564749","DOIUrl":null,"url":null,"abstract":"FPGAs can be used to build systems for automatic target recognition (ATR) that achieve an order of magnitude increase in performance over systems built using general purpose processors. This improvement is possible because the bit-level operations that comprise much of the ATR computational burden map extremely efficiently into FPGAs, and because the specificity of ATR target templates can be leveraged via fast reconfiguration. We describe here algorithms, design tools, and implementation strategies that are being used in a configurable computing system for ATR.","PeriodicalId":244873,"journal":{"name":"1996 Proceedings IEEE Symposium on FPGAs for Custom Computing Machines","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 Proceedings IEEE Symposium on FPGAs for Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.1996.564749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

Abstract

FPGAs can be used to build systems for automatic target recognition (ATR) that achieve an order of magnitude increase in performance over systems built using general purpose processors. This improvement is possible because the bit-level operations that comprise much of the ATR computational burden map extremely efficiently into FPGAs, and because the specificity of ATR target templates can be leveraged via fast reconfiguration. We describe here algorithms, design tools, and implementation strategies that are being used in a configurable computing system for ATR.
自动目标识别的可配置计算解决方案
fpga可用于构建自动目标识别(ATR)系统,其性能比使用通用处理器构建的系统提高一个数量级。这种改进是可能的,因为构成ATR计算负担的大部分位级操作非常有效地映射到fpga中,并且因为ATR目标模板的特殊性可以通过快速重新配置来利用。我们在这里描述了在ATR的可配置计算系统中使用的算法、设计工具和实现策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信