{"title":"Towards Attack Detection in Multimodal Cyber-Physical Systems with Sticky HDP-HMM based Time Series Analysis","authors":"Andrew E. Hong, P. Malinovsky, Suresh Damodaran","doi":"10.1145/3604434","DOIUrl":null,"url":null,"abstract":"Automatic detection of the precise occurrence and duration of an attack reflected in time-series logs generated by cyber-physical systems is a challenging problem. This problem is exacerbated when performing this analysis using logs with limited system information. In a realistic scenario, multiple and differing attack methods may be employed in rapid succession. Modern or legacy systems operate in multiple modes and contain multiple devices recording a variety of continuous and categorical data streams. This work presents a non-parametric Bayesian framework that addresses these challenges using the sticky Hierarchical Dirichlet Process Hidden Markov Model (sHDP-HMM). Additionally, we explore metrics for measuring the accuracy of the detected events: their timings and durations and compares the computational efficiency of different inference implementations of the model. The efficacy of attack detection is demonstrated in two settings: an avionics testbed and a consumer robot.","PeriodicalId":202552,"journal":{"name":"Digital Threats: Research and Practice","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Threats: Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic detection of the precise occurrence and duration of an attack reflected in time-series logs generated by cyber-physical systems is a challenging problem. This problem is exacerbated when performing this analysis using logs with limited system information. In a realistic scenario, multiple and differing attack methods may be employed in rapid succession. Modern or legacy systems operate in multiple modes and contain multiple devices recording a variety of continuous and categorical data streams. This work presents a non-parametric Bayesian framework that addresses these challenges using the sticky Hierarchical Dirichlet Process Hidden Markov Model (sHDP-HMM). Additionally, we explore metrics for measuring the accuracy of the detected events: their timings and durations and compares the computational efficiency of different inference implementations of the model. The efficacy of attack detection is demonstrated in two settings: an avionics testbed and a consumer robot.