Partial Observability for the Shallow Water Equations

Sarah King, W. Kang, Liang Xu
{"title":"Partial Observability for the Shallow Water Equations","authors":"Sarah King, W. Kang, Liang Xu","doi":"10.1137/1.9781611973273.23","DOIUrl":null,"url":null,"abstract":"In this paper we discuss a quantitative measure of partial observability for the shallow water equations. The quantity is consistent if approximated using well posed approximation schemes. A first order approximation of an unobservability index using empirical gramian is discussed. For linear systems with full state observability, the empirical gramian is equivalent to the observability gramian in control theory. We present algorithms for the computation of partial observability for the shallow water equations. These algorithms approximate the unobservability index using the empirical gramian via the nonlinear system and the linearized system given by the tangent linear model. This work has applications to optimal sensor placement for numerical weather prediction.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973273.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we discuss a quantitative measure of partial observability for the shallow water equations. The quantity is consistent if approximated using well posed approximation schemes. A first order approximation of an unobservability index using empirical gramian is discussed. For linear systems with full state observability, the empirical gramian is equivalent to the observability gramian in control theory. We present algorithms for the computation of partial observability for the shallow water equations. These algorithms approximate the unobservability index using the empirical gramian via the nonlinear system and the linearized system given by the tangent linear model. This work has applications to optimal sensor placement for numerical weather prediction.
浅水方程的部分可观测性
本文讨论了浅水方程部分可观测性的一个定量测度。如果用适定的近似方案近似,则该量是一致的。用经验语法学讨论了不可观测性指数的一阶近似。对于具有全状态可观测性的线性系统,经验格律等价于控制论中的可观测格律。给出了浅水方程部分可观测性的计算算法。这些算法通过切线线性模型给出的非线性系统和线性化系统,利用经验gramian逼近不可观测性指数。这项工作可应用于数值天气预报的最佳传感器位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信