Competitive On-line Linear FIR MMSE Filtering

Taesup Moon, T. Weissman
{"title":"Competitive On-line Linear FIR MMSE Filtering","authors":"Taesup Moon, T. Weissman","doi":"10.1109/ISIT.2007.4557121","DOIUrl":null,"url":null,"abstract":"We consider the problem of causal estimation, i.e., filtering, of a real-valued signal corrupted by zero mean, i.i.d., real-valued additive noise under the mean square error (MSE) criterion. We build a competitive on-line filtering algorithm whose normalized cumulative MSE, for every bounded underlying signal, is asymptotically as small as the best linear finite-duration impulse response (FIR) filter of order d. We do not assume any stochastic mechanism in generating the underlying signal, and assume only the variance of the noise is known to the filter. The regret of our scheme is shown to decay in the order of O (log n/n), where n is the length of the signal. Moreover, we present a concentration of the average square error of our scheme to that of the best d-th order linear FIR filter. Our analysis combines tools from the problems of universal filtering and competitive on-line regression.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the problem of causal estimation, i.e., filtering, of a real-valued signal corrupted by zero mean, i.i.d., real-valued additive noise under the mean square error (MSE) criterion. We build a competitive on-line filtering algorithm whose normalized cumulative MSE, for every bounded underlying signal, is asymptotically as small as the best linear finite-duration impulse response (FIR) filter of order d. We do not assume any stochastic mechanism in generating the underlying signal, and assume only the variance of the noise is known to the filter. The regret of our scheme is shown to decay in the order of O (log n/n), where n is the length of the signal. Moreover, we present a concentration of the average square error of our scheme to that of the best d-th order linear FIR filter. Our analysis combines tools from the problems of universal filtering and competitive on-line regression.
竞争在线线性FIR MMSE滤波
我们考虑了在均方误差(MSE)准则下被零均值(即实值加性噪声)损坏的实值信号的因果估计问题,即滤波问题。我们构建了一种竞争在线滤波算法,对于每个有界底层信号,其归一化累积MSE渐近小于d阶的最佳线性有限持续脉冲响应(FIR)滤波器。我们不假设在生成底层信号时存在任何随机机制,并且假设滤波器只知道噪声的方差。我们的方案的遗憾被证明以O (log n/n)的顺序衰减,其中n是信号的长度。此外,我们提出了我们的方案的平均平方误差集中于最好的d阶线性FIR滤波器。我们的分析结合了通用过滤和竞争性在线回归问题的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信