VIBGYOR indexing technique for image mining

Balvant Tarulatha, Namrata Shroff, M. Chaudhary
{"title":"VIBGYOR indexing technique for image mining","authors":"Balvant Tarulatha, Namrata Shroff, M. Chaudhary","doi":"10.1109/SAPIENCE.2016.7684150","DOIUrl":null,"url":null,"abstract":"The numbers of digital images are increasing day by day and mining from large databases is becoming harder & harder. Indexing image data based on text is tiresome and error prone. If the indexing based on low-level feature of the image then it may reduce the workload and mining become faster. In this research paper we propose an indexing technique which indexes the digital images in the database by the highest color percentage. The images will be automatically classified by its own low-level feature i.e. Color. Implementation of this technique will be benefits the image mining.","PeriodicalId":340137,"journal":{"name":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIENCE.2016.7684150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The numbers of digital images are increasing day by day and mining from large databases is becoming harder & harder. Indexing image data based on text is tiresome and error prone. If the indexing based on low-level feature of the image then it may reduce the workload and mining become faster. In this research paper we propose an indexing technique which indexes the digital images in the database by the highest color percentage. The images will be automatically classified by its own low-level feature i.e. Color. Implementation of this technique will be benefits the image mining.
用于图像挖掘的VIBGYOR索引技术
数字图像的数量日益增加,从大型数据库中进行挖掘变得越来越困难。基于文本对图像数据进行索引是令人厌烦且容易出错的。如果基于图像的底层特征进行索引,则可以减少工作量,提高挖掘速度。在本文中,我们提出了一种索引技术,以最高颜色百分比对数据库中的数字图像进行索引。图像将根据其自身的低级特征(即颜色)自动分类。该技术的实现将有利于图像挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信