Bayesian relevance feedback for content-based image retrieval

Nuno Vasconcelos, Andrew Lippman
{"title":"Bayesian relevance feedback for content-based image retrieval","authors":"Nuno Vasconcelos, Andrew Lippman","doi":"10.1109/IVL.2000.853841","DOIUrl":null,"url":null,"abstract":"We present a Bayesian learning algorithm that relies on belief propagation to integrate feedback provided by the user over a retrieval session. Bayesian retrieval leads to a natural criteria for evaluating local image similarity without requiring any image segmentation. This allows the practical implementation of retrieval systems where users can provide image regions, or objects, as queries. Region-based queries are significantly less ambiguous than queries based on entire images leading to significant improvements in retrieval precision. When combined with local similarity, Bayesian belief propagation is a powerful paradigm for user interaction. Experimental results show that significant improvements in the frequency of convergence to the relevant images can be achieved by the inclusion of learning in the retrieval process.","PeriodicalId":333664,"journal":{"name":"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVL.2000.853841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We present a Bayesian learning algorithm that relies on belief propagation to integrate feedback provided by the user over a retrieval session. Bayesian retrieval leads to a natural criteria for evaluating local image similarity without requiring any image segmentation. This allows the practical implementation of retrieval systems where users can provide image regions, or objects, as queries. Region-based queries are significantly less ambiguous than queries based on entire images leading to significant improvements in retrieval precision. When combined with local similarity, Bayesian belief propagation is a powerful paradigm for user interaction. Experimental results show that significant improvements in the frequency of convergence to the relevant images can be achieved by the inclusion of learning in the retrieval process.
基于内容的图像检索贝叶斯相关反馈
我们提出了一种贝叶斯学习算法,该算法依赖于信念传播来整合用户在检索会话中提供的反馈。贝叶斯检索在不需要任何图像分割的情况下为评估局部图像相似度提供了一个自然的标准。这允许检索系统的实际实现,其中用户可以提供图像区域或对象作为查询。与基于整个图像的查询相比,基于区域的查询歧义性明显降低,从而显著提高了检索精度。当与局部相似度相结合时,贝叶斯信念传播是一种强大的用户交互范式。实验结果表明,在检索过程中加入学习可以显著提高对相关图像的收敛频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信