Concurrent Architecture for Automated Malware Classification

Timothy Daly, L. Goldrich
{"title":"Concurrent Architecture for Automated Malware Classification","authors":"Timothy Daly, L. Goldrich","doi":"10.1109/HICSS.2010.115","DOIUrl":null,"url":null,"abstract":"This paper introduces a new architecture for automating the generalization of program structure and the recognition of common patterns in the area of malware analysis. By using massively parallel processing on large malware program sets we can recognize common code sequences, such as loop constructs, if-then-else structures, and subroutine calls. We can also recognize common subroutine sequences. The Concordia architecture generalizes the recognized elements so they can be collected into invariant forms. The invariant forms can be used by the analyst to understand the program being analyzed. The invariant forms can also be used to classify large numbers of programs automatically.","PeriodicalId":328811,"journal":{"name":"2010 43rd Hawaii International Conference on System Sciences","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 43rd Hawaii International Conference on System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2010.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper introduces a new architecture for automating the generalization of program structure and the recognition of common patterns in the area of malware analysis. By using massively parallel processing on large malware program sets we can recognize common code sequences, such as loop constructs, if-then-else structures, and subroutine calls. We can also recognize common subroutine sequences. The Concordia architecture generalizes the recognized elements so they can be collected into invariant forms. The invariant forms can be used by the analyst to understand the program being analyzed. The invariant forms can also be used to classify large numbers of programs automatically.
自动恶意软件分类的并发架构
在恶意软件分析领域,本文介绍了一种用于程序结构的自动化泛化和通用模式识别的新体系结构。通过对大型恶意软件程序集使用大规模并行处理,我们可以识别常见的代码序列,例如循环结构、if-then-else结构和子例程调用。我们还可以识别常见的子程序序列。Concordia体系结构概括了已识别的元素,因此它们可以被收集成不变的形式。分析人员可以使用不变形式来理解被分析的程序。不变形式还可以用于对大量程序进行自动分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信