Information-optimal Abstaining for Reliable Classification of Building Functions

G. Dax, M. Werner
{"title":"Information-optimal Abstaining for Reliable Classification of Building Functions","authors":"G. Dax, M. Werner","doi":"10.5194/AGILE-GISS-2-1-2021","DOIUrl":null,"url":null,"abstract":"Abstract. In the past decade, major breakthroughs in sensor technology and algorithms have enabled the functional analysis of urban regions based on Earth observation data. It has, for example, become possible to assign functions to areas in cities on a regional scale. With this paper, we develop a novel method for extracting building functions from social media text alone. Therefore, a technique of abstaining is applied in order to overcome the fact that most tweets will not contain information related to a building function albeit they have been sent from a specific building as well as the problem that classification schemes for building functions are overlapping.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/AGILE-GISS-2-1-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. In the past decade, major breakthroughs in sensor technology and algorithms have enabled the functional analysis of urban regions based on Earth observation data. It has, for example, become possible to assign functions to areas in cities on a regional scale. With this paper, we develop a novel method for extracting building functions from social media text alone. Therefore, a technique of abstaining is applied in order to overcome the fact that most tweets will not contain information related to a building function albeit they have been sent from a specific building as well as the problem that classification schemes for building functions are overlapping.
建筑功能可靠分类的信息优化回避
摘要近十年来,传感器技术和算法的重大突破,使基于对地观测数据的城市区域功能分析成为可能。例如,可以在区域范围内为城市的各个区域分配功能。在本文中,我们开发了一种仅从社交媒体文本中提取建筑功能的新方法。因此,为了克服大多数tweet虽然是从特定建筑物发送的,但不包含与建筑物功能相关的信息,以及建筑物功能分类方案重叠的问题,采用了弃权技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信