On hyperbolicity of close to piecewise constant linear cocycles over irrational rotations

A. Ivanov
{"title":"On hyperbolicity of close to piecewise constant linear cocycles over irrational rotations","authors":"A. Ivanov","doi":"10.1109/DD55230.2022.9960970","DOIUrl":null,"url":null,"abstract":"We study a family of skew products <tex>$\\boldsymbol{F_{A,t}=(\\sigma_{\\omega},\\ A_{t})}$</tex> over irrational rotation <tex>$\\sigma_{\\omega}(x)=x+\\omega$</tex> of a circle <tex>$\\boldsymbol{\\mathbb{T}^{1}}$</tex>, which depend on a real parameter <tex>$t$</tex>. It is supposed that the transformation <tex>$A_{t}\\in C(\\mathbb{T}^{1},\\ SL(2,\\mathbb{R}))$</tex> is of the form <tex>$A_{t}(x)=R(\\varphi(x))Z(\\lambda(x))$</tex>, where <tex>$R(\\varphi)$</tex> stands for a rotation in <tex>$\\mathbb{R}^{2}$</tex> over an angle <tex>$\\varphi$</tex> and <tex>$Z(\\lambda)=\\text{diag}\\{\\lambda,\\lambda^{-1}\\}$</tex> is a diagonal matrix. Assuming <tex>$\\lambda(x)\\geq\\lambda_{\\mathrm{O}}\\gg 1$</tex> and the function <tex>$\\varphi$</tex> to be piecewise linear such that <tex>$\\cos(x)$</tex> possesses only simple zeroes, we study the problem of uniform hyperbolicity for the cocycle generated by <tex>$\\boldsymbol{F_{A,t}}$</tex>. We apply the critical set method to formulate sufficient conditions on the parameter values which guarantee the uniform hyperbolicity of the cocycle. Application to the Schrödinger cocycles is also discussed.","PeriodicalId":125852,"journal":{"name":"2022 Days on Diffraction (DD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD55230.2022.9960970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a family of skew products $\boldsymbol{F_{A,t}=(\sigma_{\omega},\ A_{t})}$ over irrational rotation $\sigma_{\omega}(x)=x+\omega$ of a circle $\boldsymbol{\mathbb{T}^{1}}$, which depend on a real parameter $t$. It is supposed that the transformation $A_{t}\in C(\mathbb{T}^{1},\ SL(2,\mathbb{R}))$ is of the form $A_{t}(x)=R(\varphi(x))Z(\lambda(x))$, where $R(\varphi)$ stands for a rotation in $\mathbb{R}^{2}$ over an angle $\varphi$ and $Z(\lambda)=\text{diag}\{\lambda,\lambda^{-1}\}$ is a diagonal matrix. Assuming $\lambda(x)\geq\lambda_{\mathrm{O}}\gg 1$ and the function $\varphi$ to be piecewise linear such that $\cos(x)$ possesses only simple zeroes, we study the problem of uniform hyperbolicity for the cocycle generated by $\boldsymbol{F_{A,t}}$. We apply the critical set method to formulate sufficient conditions on the parameter values which guarantee the uniform hyperbolicity of the cocycle. Application to the Schrödinger cocycles is also discussed.
非合理旋转上接近分段常数线性环的双曲性
我们研究了一个圆$\boldsymbol{\mathbb{T}^{1}}$的不合理旋转$\sigma_{\omega}(x)=x+\omega$上的一组斜积$\boldsymbol{F_{A,t}=(\sigma_{\omega},\ A_{t})}$,它们依赖于一个实参数$t$。假设变换$A_{t}\in C(\mathbb{T}^{1},\ SL(2,\mathbb{R}))$的形式为$A_{t}(x)=R(\varphi(x))Z(\lambda(x))$,其中$R(\varphi)$表示$\mathbb{R}^{2}$在一个角度上的旋转$\varphi$, $Z(\lambda)=\text{diag}\{\lambda,\lambda^{-1}\}$是一个对角矩阵。假设$\lambda(x)\geq\lambda_{\mathrm{O}}\gg 1$和函数$\varphi$是分段线性的,使得$\cos(x)$只有简单的零,我们研究了$\boldsymbol{F_{A,t}}$生成的循环的一致双曲性问题。应用临界集方法,给出了保证循环一致双曲性的参数值的充分条件。讨论了Schrödinger循环的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信