Distributed Manipulability optimization in a Finite Time Neural Network for Redundant Manipulators

Y. Kong, Jiajia Wu, Shiyong Chen, Junwen Zhou
{"title":"Distributed Manipulability optimization in a Finite Time Neural Network for Redundant Manipulators","authors":"Y. Kong, Jiajia Wu, Shiyong Chen, Junwen Zhou","doi":"10.1109/ICICIP53388.2021.9642165","DOIUrl":null,"url":null,"abstract":"A distributed manipulability optimization (DMO) scheme based on a finite time neural network is proposed in this paper to solve the cooperative motion planning of redundant manipulators. In this proposed kinematic scheme, the end-effectors of the manipulators can complete the specific task in a cooperative manner under peer-to-peer communication and the optimal kinematic time of redundant manipulators has achieved. The DMO scheme is formulated into a quadratic program and is solved by Lagrange multiplier theorem. The stability and finiteness of the proposed DMO scheme have been proved in theory. Simulation results on three redundant manipulators show the validity and accuracy of this new DMO scheme. method","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A distributed manipulability optimization (DMO) scheme based on a finite time neural network is proposed in this paper to solve the cooperative motion planning of redundant manipulators. In this proposed kinematic scheme, the end-effectors of the manipulators can complete the specific task in a cooperative manner under peer-to-peer communication and the optimal kinematic time of redundant manipulators has achieved. The DMO scheme is formulated into a quadratic program and is solved by Lagrange multiplier theorem. The stability and finiteness of the proposed DMO scheme have been proved in theory. Simulation results on three redundant manipulators show the validity and accuracy of this new DMO scheme. method
基于有限时间神经网络的冗余机械臂可操纵性优化
针对冗余机械手的协同运动规划问题,提出了一种基于有限时间神经网络的分布式可操纵性优化方案。在该方案中,机器人末端执行器在点对点通信下能够以协作的方式完成特定任务,实现了冗余机器人的最优运动时间。将DMO格式化为二次规划,并利用拉格朗日乘子定理求解。从理论上证明了所提DMO方案的稳定性和有限性。对三个冗余机械手的仿真结果表明了该方法的有效性和准确性。方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信