Enhanced hierarchical fuzzy model using evolutionary GA with modified ABC algorithm for classification problem

Ting-Cheng Feng, Tsung-Ying Chiang, Tzuu-Hseng S. Li
{"title":"Enhanced hierarchical fuzzy model using evolutionary GA with modified ABC algorithm for classification problem","authors":"Ting-Cheng Feng, Tsung-Ying Chiang, Tzuu-Hseng S. Li","doi":"10.1109/ICCSS.2015.7281146","DOIUrl":null,"url":null,"abstract":"This paper enhances the hierarchical fuzzy model to deal with the classification problems by adopting evolutionary genetic algorithm (GA) with a modified artificial bee colony (ABC) algorithm. Traditionally, fuzzy classifier could not provide a sufficiently high classification rate in higher feature dimension with few rules. In the literature, the genetic algorithm can take advantage from the global searching; moreover, the characteristic of ABC can enhance the local searching. Therefore, the hierarchical fuzzy model integrates GA with a modified ABC algorithm is constructed in this study to recognize some classification problems. The classification simulation includes three benchmark databases such as Glass, Wine, and Iris database. The result demonstrates that using evolutionary GA and modified ABC algorithm is beneficial than that without turning. Therefore, it is clearly that our methodology considers not only the global exploration but also the local exploitation.","PeriodicalId":299619,"journal":{"name":"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS.2015.7281146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper enhances the hierarchical fuzzy model to deal with the classification problems by adopting evolutionary genetic algorithm (GA) with a modified artificial bee colony (ABC) algorithm. Traditionally, fuzzy classifier could not provide a sufficiently high classification rate in higher feature dimension with few rules. In the literature, the genetic algorithm can take advantage from the global searching; moreover, the characteristic of ABC can enhance the local searching. Therefore, the hierarchical fuzzy model integrates GA with a modified ABC algorithm is constructed in this study to recognize some classification problems. The classification simulation includes three benchmark databases such as Glass, Wine, and Iris database. The result demonstrates that using evolutionary GA and modified ABC algorithm is beneficial than that without turning. Therefore, it is clearly that our methodology considers not only the global exploration but also the local exploitation.
基于改进ABC算法的进化遗传算法改进层次模糊模型的分类问题
本文采用进化遗传算法(GA)和改进的人工蜂群(ABC)算法对层次模糊模型进行改进,以解决分类问题。传统的模糊分类器在规则较少的情况下,无法在较高的特征维上提供足够高的分类率。在文献中,遗传算法可以利用全局搜索的优势;此外,ABC的特点可以增强局部搜索能力。因此,本研究将遗传算法与改进的ABC算法相结合,构建层次模糊模型来识别一些分类问题。分类仿真包括Glass、Wine和Iris数据库三个基准数据库。结果表明,使用进化遗传算法和改进ABC算法比不使用转弯算法更有效。因此,很明显,我们的方法不仅考虑了全球的探索,也考虑了当地的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信