Parameter estimation of a space radiator using differential evolution algorithm

R. Das
{"title":"Parameter estimation of a space radiator using differential evolution algorithm","authors":"R. Das","doi":"10.1109/IC3.2016.7880200","DOIUrl":null,"url":null,"abstract":"In this article, different combinations of geometrical dimensions of a rectangular space radiator have been estimated using an inverse method. The solution procedure is based on the real-coded differential evolution (DE) optimization algorithm. Electronic equipments and aircraft power plants such as gas turbines need to be consistently cooled for safe operation and due to absence of air medium in space, the heat transfer occurs mainly by surface radiation. The required rate of heat to be dissipated is directly dependent upon the prevailing temperature distribution. Therefore, in this work, the estimation of parameters has been done for satisfying a predefined and simulated surface temperature profile on a space radiator. The temperature distribution used in the present inverse simulation study has been calculated and updated using the fourth order Runge-Kutta method and DE algorithm, respectively. Results have been validated against the existing literature. The present work reveals many possible combinations of the space radiator to attain a given temperature distribution. This offers the opportunity and flexibility to select a space radiator to achieve the required heat transfer rate for cooling various electronic equipments and power generating units typically for space applications.","PeriodicalId":294210,"journal":{"name":"2016 Ninth International Conference on Contemporary Computing (IC3)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Ninth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2016.7880200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, different combinations of geometrical dimensions of a rectangular space radiator have been estimated using an inverse method. The solution procedure is based on the real-coded differential evolution (DE) optimization algorithm. Electronic equipments and aircraft power plants such as gas turbines need to be consistently cooled for safe operation and due to absence of air medium in space, the heat transfer occurs mainly by surface radiation. The required rate of heat to be dissipated is directly dependent upon the prevailing temperature distribution. Therefore, in this work, the estimation of parameters has been done for satisfying a predefined and simulated surface temperature profile on a space radiator. The temperature distribution used in the present inverse simulation study has been calculated and updated using the fourth order Runge-Kutta method and DE algorithm, respectively. Results have been validated against the existing literature. The present work reveals many possible combinations of the space radiator to attain a given temperature distribution. This offers the opportunity and flexibility to select a space radiator to achieve the required heat transfer rate for cooling various electronic equipments and power generating units typically for space applications.
基于差分进化算法的空间辐射器参数估计
在本文中,使用逆方法估计了矩形空间辐射体的不同几何尺寸组合。求解过程基于实数编码差分进化(DE)优化算法。电子设备和飞机动力装置如燃气轮机等需要持续冷却才能安全运行,由于空间中没有空气介质,传热主要通过表面辐射进行。所需的散热率直接取决于当时的温度分布。因此,在这项工作中,已经完成了参数的估计,以满足预先确定的和模拟的空间散热器表面温度分布。利用四阶龙格-库塔法和DE算法分别计算和更新了本逆模拟研究中使用的温度分布。结果已与现有文献进行了验证。目前的工作揭示了许多可能的空间散热器组合,以达到给定的温度分布。这为选择空间散热器提供了机会和灵活性,以达到冷却各种电子设备和发电机组所需的传热速率,通常用于空间应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信