Autonomous Driving Features based on 79 GHz Polarimetric Radar Data

S. Trummer, Gerhard F. Hamberger, R. Koerber, U. Siart, T. Eibert
{"title":"Autonomous Driving Features based on 79 GHz Polarimetric Radar Data","authors":"S. Trummer, Gerhard F. Hamberger, R. Koerber, U. Siart, T. Eibert","doi":"10.23919/EURAD.2018.8546632","DOIUrl":null,"url":null,"abstract":"Predicting the behavior of the environment precisely is an important challenge of autonomous driving. With this purpose in mind, the potential of polarimetric radar technology is shown in this paper. The main features like object identification and exact contour detection allow the analysis of different layers of velocity and, thus, a clearer target classification. Another key feature is street condition measurement, which is necessary to calculate safe velocities, for example for driving around a curve. These polarimetric features are explained with examples which include actual radar data and signal analysis.","PeriodicalId":171460,"journal":{"name":"2018 15th European Radar Conference (EuRAD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th European Radar Conference (EuRAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EURAD.2018.8546632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Predicting the behavior of the environment precisely is an important challenge of autonomous driving. With this purpose in mind, the potential of polarimetric radar technology is shown in this paper. The main features like object identification and exact contour detection allow the analysis of different layers of velocity and, thus, a clearer target classification. Another key feature is street condition measurement, which is necessary to calculate safe velocities, for example for driving around a curve. These polarimetric features are explained with examples which include actual radar data and signal analysis.
基于79 GHz极化雷达数据的自动驾驶特性
准确预测环境的行为是自动驾驶的一个重要挑战。考虑到这一目的,本文显示了极化雷达技术的潜力。物体识别和精确的轮廓检测等主要特征允许分析不同的速度层,从而更清晰地分类目标。另一个关键功能是街道状况测量,这对于计算安全速度是必要的,例如在弯道上行驶。用实际雷达数据和信号分析的例子说明了这些极化特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信