Some algebra related to P- and Q-polynomial association schemes

Tatsuro Ito, K. Tanabe, Paul M. Terwilliger
{"title":"Some algebra related to P- and Q-polynomial association schemes","authors":"Tatsuro Ito, K. Tanabe, Paul M. Terwilliger","doi":"10.1090/dimacs/056/14","DOIUrl":null,"url":null,"abstract":"Let $K$ denote a field, and let $V$ denote a vector space over $K$ with finite positive dimension. Consider a pair of linear transformations $A:V\\to V$ and $A^*:V\\to V$ that satisfy both conditions below: \n(i) There exists a basis for $V$ with respect to which the matrix representing $A$ is diagonal, and the matrix representing $A^*$ is irreducible tridiagonal. \n(ii) There exists a basis for $V$ with respect to which the matrix representing $A^*$ is diagonal, and the matrix representing $A$ is irreducible tridiagonal. \nSuch a pair is called a Leonard pair on $V$. In this paper we introduce a mild generalization of a Leonard pair called a tridiagonal pair. A Leonard pair is the same thing as a tridiagonal pair such that for each transformation all eigenspaces have dimension one.","PeriodicalId":289495,"journal":{"name":"Codes and Association Schemes","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"210","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Codes and Association Schemes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/056/14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 210

Abstract

Let $K$ denote a field, and let $V$ denote a vector space over $K$ with finite positive dimension. Consider a pair of linear transformations $A:V\to V$ and $A^*:V\to V$ that satisfy both conditions below: (i) There exists a basis for $V$ with respect to which the matrix representing $A$ is diagonal, and the matrix representing $A^*$ is irreducible tridiagonal. (ii) There exists a basis for $V$ with respect to which the matrix representing $A^*$ is diagonal, and the matrix representing $A$ is irreducible tridiagonal. Such a pair is called a Leonard pair on $V$. In this paper we introduce a mild generalization of a Leonard pair called a tridiagonal pair. A Leonard pair is the same thing as a tridiagonal pair such that for each transformation all eigenspaces have dimension one.
与P-和q -多项式关联方案有关的一些代数
设K$表示一个域,设V$表示K$上有有限正维的向量空间。考虑一对线性变换$ a:V\to V$和$ a ^*:V\to V$,它们满足以下两个条件:(i)存在一个基,在这个基上表示$ a $的矩阵是对角的,并且表示$ a ^*$的矩阵是不可约的三对角的。(ii)对于$V$存在一基,表示$ a ^*$的矩阵是对角的,表示$ a $的矩阵是不可约的三对角的。这样的一对被称为$V$上的伦纳德对。本文介绍了伦纳德对的一种温和推广,即三对角对。伦纳德对和三对角线对是一样的对于每一个变换所有的特征空间都是维数为1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信