Series acceleration formulas obtained from experimentally discovered hypergeometric recursions

P. Levrie, J. Campbell
{"title":"Series acceleration formulas obtained from experimentally discovered hypergeometric recursions","authors":"P. Levrie, J. Campbell","doi":"10.46298/dmtcs.9557","DOIUrl":null,"url":null,"abstract":"In 2010, Kh. Hessami Pilehrood and T. Hessami Pilehrood introduced generating function identities used to obtain series accelerations for values of Dirichlet's $\\beta$ function, via the Markov--Wilf--Zeilberger method. Inspired by these past results, together with related results introduced by Chu et al., we introduce a variety of hypergeometric recurrences. We prove these recurrences using the WZ method, and we apply these recurrences to obtain series acceleration identities. We introduce a family of summations generalizing a Ramanujan-type series for $\\frac{1}{\\pi^2}$ due to Guillera, and a family of summations generalizing an accelerated series for Catalan's constant due to Lupa\\c{s}, and many related results.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.9557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In 2010, Kh. Hessami Pilehrood and T. Hessami Pilehrood introduced generating function identities used to obtain series accelerations for values of Dirichlet's $\beta$ function, via the Markov--Wilf--Zeilberger method. Inspired by these past results, together with related results introduced by Chu et al., we introduce a variety of hypergeometric recurrences. We prove these recurrences using the WZ method, and we apply these recurrences to obtain series acceleration identities. We introduce a family of summations generalizing a Ramanujan-type series for $\frac{1}{\pi^2}$ due to Guillera, and a family of summations generalizing an accelerated series for Catalan's constant due to Lupa\c{s}, and many related results.
由实验发现的超几何递归得到的级数加速度公式
2010年,Kh。Hessami Pilehrood和T. Hessami Pilehrood介绍了生成函数恒等式,用于通过Markov- Wilf- Zeilberger方法获得Dirichlet's $\beta$函数值的级数加速度。受这些过去结果的启发,以及Chu等人介绍的相关结果,我们引入了各种超几何递归。我们用WZ方法证明了这些递归式,并应用这些递归式得到了级数加速度恒等式。我们引入了关于Guillera的$\frac{1}{\pi^2}$的ramanujan型级数的推广族和关于Lupa的\c{s}的Catalan常数的加速级数的推广族,以及许多相关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信