Formal concept analysis support for web document clustering based on social tagging

Chunping Ouyang, Xiaohua Yang, Xiaoyun Li, Zhiming Liu
{"title":"Formal concept analysis support for web document clustering based on social tagging","authors":"Chunping Ouyang, Xiaohua Yang, Xiaoyun Li, Zhiming Liu","doi":"10.1109/URKE.2012.6319573","DOIUrl":null,"url":null,"abstract":"Web document clustering is one of the most important research branches of Clustering Analyzing. The objective of web document clustering is to meet the need of retrieving web document efficiently from massive information in Internet. Recently social tagging is the important form of document organization in web 2.0, and the tagging as a document descriptor is used to improve the effectiveness of web searching. But a web document usually belongs to various category of tagging, which may lead to the difficulty of browsing web document based on single tagging. This paper explores the use of Formal Concept Analysis (FCA) as mathematical tool to analyze the social tagging of web document, and presents a model for web document clustering based on tagging semantic. Furthermore, taking community web site Douban as an example, the model is applied to allow users to tag and serendipitously browse web document using Formal Concept Analysis.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Web document clustering is one of the most important research branches of Clustering Analyzing. The objective of web document clustering is to meet the need of retrieving web document efficiently from massive information in Internet. Recently social tagging is the important form of document organization in web 2.0, and the tagging as a document descriptor is used to improve the effectiveness of web searching. But a web document usually belongs to various category of tagging, which may lead to the difficulty of browsing web document based on single tagging. This paper explores the use of Formal Concept Analysis (FCA) as mathematical tool to analyze the social tagging of web document, and presents a model for web document clustering based on tagging semantic. Furthermore, taking community web site Douban as an example, the model is applied to allow users to tag and serendipitously browse web document using Formal Concept Analysis.
基于社会标签的web文档聚类的形式化概念分析支持
Web文档聚类是聚类分析的一个重要研究分支。web文档聚类的目的是为了满足从海量网络信息中高效检索web文档的需要。社会标签是web 2.0时代文档组织的重要形式,社会标签作为文档描述符被用来提高web搜索的效率。但是一个web文档通常属于多种类型的标签,这可能会导致基于单一标签的web文档的浏览困难。本文探讨了使用形式概念分析(FCA)作为数学工具来分析web文档的社会标记,并提出了一个基于标记语义的web文档聚类模型。进一步,以豆瓣社区网站为例,利用形式概念分析方法,将该模型应用于允许用户对网络文档进行标记和偶然浏览。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信