Boundary-based MWE segmentation with text partitioning

NUT@EMNLP Pub Date : 2016-08-05 DOI:10.18653/v1/W17-4401
J. Williams
{"title":"Boundary-based MWE segmentation with text partitioning","authors":"J. Williams","doi":"10.18653/v1/W17-4401","DOIUrl":null,"url":null,"abstract":"This submission describes the development of a fine-grained, text-chunking algorithm for the task of comprehensive MWE segmentation. This task notably focuses on the identification of colloquial and idiomatic language. The submission also includes a thorough model evaluation in the context of two recent shared tasks, spanning 19 different languages and many text domains, including noisy, user-generated text. Evaluations exhibit the presented model as the best overall for purposes of MWE segmentation, and open-source software is released with the submission (although links are withheld for purposes of anonymity). Additionally, the authors acknowledge the existence of a pre-print document on arxiv.org, which should be avoided to maintain anonymity in review.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This submission describes the development of a fine-grained, text-chunking algorithm for the task of comprehensive MWE segmentation. This task notably focuses on the identification of colloquial and idiomatic language. The submission also includes a thorough model evaluation in the context of two recent shared tasks, spanning 19 different languages and many text domains, including noisy, user-generated text. Evaluations exhibit the presented model as the best overall for purposes of MWE segmentation, and open-source software is released with the submission (although links are withheld for purposes of anonymity). Additionally, the authors acknowledge the existence of a pre-print document on arxiv.org, which should be avoided to maintain anonymity in review.
基于边界的文本分割
本文描述了一种用于全面MWE分割任务的细粒度文本分块算法的开发。这项任务特别侧重于口语和习惯语言的识别。提交的文件还包括在两个最近共享任务的背景下进行全面的模型评估,这些任务跨越19种不同的语言和许多文本域,包括嘈杂的、用户生成的文本。评估表明,所提出的模型是MWE分割目的的最佳整体,并且开源软件随提交一起发布(尽管出于匿名目的,链接被保留)。此外,作者承认在arxiv.org上存在预印文件,应该避免在审查中保持匿名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信