MRI brain tumor recognition using Modified Shuffled Frog Leaping Algorithm

Anis Ladgham, A. Sakly, A. Mtibaa
{"title":"MRI brain tumor recognition using Modified Shuffled Frog Leaping Algorithm","authors":"Anis Ladgham, A. Sakly, A. Mtibaa","doi":"10.1109/STA.2014.7086694","DOIUrl":null,"url":null,"abstract":"This paper presents a novel optimal algorithm for MRI brain tumor recognition. To do this, we use the newly developed meta-heuristic MSFLA (Modified Shuffled Frog Leaping Algorithm). Otherwise, a suitable choice of the fitness function ensures faster time of research with greater chance of convergence to the optimal value. The calculation of the used fitness function is linked to the image. The image must be scanned to calculate this function. For this, this function assists to quickly discover the adequate area modeling the tumor. Computer simulation results illustrate the effectiveness of the developed algorithm.","PeriodicalId":125957,"journal":{"name":"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA.2014.7086694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a novel optimal algorithm for MRI brain tumor recognition. To do this, we use the newly developed meta-heuristic MSFLA (Modified Shuffled Frog Leaping Algorithm). Otherwise, a suitable choice of the fitness function ensures faster time of research with greater chance of convergence to the optimal value. The calculation of the used fitness function is linked to the image. The image must be scanned to calculate this function. For this, this function assists to quickly discover the adequate area modeling the tumor. Computer simulation results illustrate the effectiveness of the developed algorithm.
基于改进的洗牌青蛙跳跃算法的MRI脑肿瘤识别
提出了一种新的MRI脑肿瘤识别优化算法。为了做到这一点,我们使用了新开发的元启发式MSFLA (Modified shuffledfrog跳跃算法)。否则,选择合适的适应度函数可以保证更快的研究时间和更大的收敛到最优值的机会。所使用的适应度函数的计算与图像相关联。必须扫描图像来计算这个函数。为此,该功能有助于快速发现适当的肿瘤建模区域。计算机仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信