Training convolutional filters for robust face detection

M. Delakis, C. Garcia
{"title":"Training convolutional filters for robust face detection","authors":"M. Delakis, C. Garcia","doi":"10.1109/NNSP.2003.1318073","DOIUrl":null,"url":null,"abstract":"We present a face detection approach based on a convolutional neural architecture, designed to detect and precisely localize highly variable face patterns, in complex real world images. Our system automatically synthesizes simple problem-specific feature extractors from a training set of face and non face patterns, without making any assumptions or using any hand-made design concerning the features to extract or the areas of the face pattern to analyze. Experiments on different difficult test sets have shown that our approach provide superior overall detection results, while being computationally more efficient than most of state-of-the-art approaches that require dense scanning and local preprocessing.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present a face detection approach based on a convolutional neural architecture, designed to detect and precisely localize highly variable face patterns, in complex real world images. Our system automatically synthesizes simple problem-specific feature extractors from a training set of face and non face patterns, without making any assumptions or using any hand-made design concerning the features to extract or the areas of the face pattern to analyze. Experiments on different difficult test sets have shown that our approach provide superior overall detection results, while being computationally more efficient than most of state-of-the-art approaches that require dense scanning and local preprocessing.
训练卷积滤波器用于鲁棒人脸检测
我们提出了一种基于卷积神经结构的人脸检测方法,旨在检测和精确定位复杂现实世界图像中高度可变的人脸模式。我们的系统自动从人脸和非人脸模式的训练集中合成简单的特定问题特征提取器,而不做任何假设或使用任何手工设计来提取特征或分析人脸模式的区域。在不同难度测试集上的实验表明,我们的方法提供了更好的整体检测结果,同时在计算上比大多数需要密集扫描和局部预处理的最先进方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信