{"title":"Efficient Privacy-Preserving Multi-Functional Data Aggregation Scheme for Multi-Tier IoT System","authors":"Yunting Tao, Fanyu Kong, Yuliang Shi, Jia Yu, Hanlin Zhang, Huiyi Liu","doi":"10.1109/ISCC58397.2023.10218234","DOIUrl":null,"url":null,"abstract":"The proliferation of Internet of Things (IoT) devices has led to the generation of massive amounts of data that require efficient aggregation for analysis and decision-making. However, multi-tier IoT systems, which involve multiple layers of devices and gateways, face more complex security challenges in data aggregation compared to ordinary IoT systems. In this paper, we propose an efficient privacy-preserving multi-functional data aggregation scheme for multi-tier IoT architecture. The scheme supports privacy-preserving calculation of mean, variance, and anomaly proportion. The scheme uses the Paillier cryptosystem and the BLS algorithm for encryption and signature, and uses blinding techniques to keep the size of the IoT system secret. In order to make the Paillier algorithm more suitable for the IoT scenario, we also improve its efficiency of encryption and decryption. The performance evaluation shows that the scheme improves encryption efficiency by 43.7% and decryption efficiency by 45% compared to the existing scheme.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The proliferation of Internet of Things (IoT) devices has led to the generation of massive amounts of data that require efficient aggregation for analysis and decision-making. However, multi-tier IoT systems, which involve multiple layers of devices and gateways, face more complex security challenges in data aggregation compared to ordinary IoT systems. In this paper, we propose an efficient privacy-preserving multi-functional data aggregation scheme for multi-tier IoT architecture. The scheme supports privacy-preserving calculation of mean, variance, and anomaly proportion. The scheme uses the Paillier cryptosystem and the BLS algorithm for encryption and signature, and uses blinding techniques to keep the size of the IoT system secret. In order to make the Paillier algorithm more suitable for the IoT scenario, we also improve its efficiency of encryption and decryption. The performance evaluation shows that the scheme improves encryption efficiency by 43.7% and decryption efficiency by 45% compared to the existing scheme.