A time-stepping finite element method for a time-fractional partial differential equation of hidden-memory space-time variable order

Xiangcheng Zheng, Hong Wang
{"title":"A time-stepping finite element method for a time-fractional partial differential equation of hidden-memory space-time variable order","authors":"Xiangcheng Zheng, Hong Wang","doi":"10.1553/etna_vol55s652","DOIUrl":null,"url":null,"abstract":". We analyze a time-stepping finite element method for a time-fractional partial differential equation with hidden-memory space-time variable order. Due to the coupling of the space-dependent variable order with the finite element formulation and the hidden memory, the variable fractional order cannot be split from the space and destroys the monotonicity in the time-stepping discretization. Because of these difficulties, the numerical analysis of a fully-discrete finite element method of the proposed model remained untreated in the literature. We develop an alternative analysis to address these issues and to prove an optimal-order error estimate of the fully-discrete finite element scheme without any assumption on the regularity of the true solution and perform numerical experiments to substantiate the theoretical findings.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. We analyze a time-stepping finite element method for a time-fractional partial differential equation with hidden-memory space-time variable order. Due to the coupling of the space-dependent variable order with the finite element formulation and the hidden memory, the variable fractional order cannot be split from the space and destroys the monotonicity in the time-stepping discretization. Because of these difficulties, the numerical analysis of a fully-discrete finite element method of the proposed model remained untreated in the literature. We develop an alternative analysis to address these issues and to prove an optimal-order error estimate of the fully-discrete finite element scheme without any assumption on the regularity of the true solution and perform numerical experiments to substantiate the theoretical findings.
隐记忆时空变阶时间分数阶偏微分方程的时间步进有限元法
. 分析了具有隐记忆时空变阶的时间分数阶偏微分方程的时间步进有限元法。由于空间相关变量阶数与有限元公式和隐藏存储器的耦合,变量分数阶数无法从空间中分离出来,破坏了时间步进离散化的单调性。由于这些困难,所提出的模型的全离散有限元方法的数值分析在文献中仍未得到处理。我们开发了一种替代分析来解决这些问题,并证明了完全离散有限元方案的最优阶误差估计,而不需要对真解的正则性进行任何假设,并进行数值实验来证实理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信