Feature-level fusion for free-form object tracking using laserscanner and video

N. Kaempchen, M. Buehler, K. Dietmayer
{"title":"Feature-level fusion for free-form object tracking using laserscanner and video","authors":"N. Kaempchen, M. Buehler, K. Dietmayer","doi":"10.1109/IVS.2005.1505145","DOIUrl":null,"url":null,"abstract":"A scalable feature-level sensor fusion architecture combining the data of a multi-layer laserscanner and a monocular video has been developed. The approach aims at a maximization of synergetic effects by combining low-level measurement features and at the same time trying to keep the fusion architecture as general as possible. A new concept for the geometric modeling of diverse object shapes found in real traffic scenes, including free form models, enhances the precision of the object tracking. Results from real sensor data demonstrate the performance of the new algorithms compared to robust algorithms known from the literature.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

A scalable feature-level sensor fusion architecture combining the data of a multi-layer laserscanner and a monocular video has been developed. The approach aims at a maximization of synergetic effects by combining low-level measurement features and at the same time trying to keep the fusion architecture as general as possible. A new concept for the geometric modeling of diverse object shapes found in real traffic scenes, including free form models, enhances the precision of the object tracking. Results from real sensor data demonstrate the performance of the new algorithms compared to robust algorithms known from the literature.
特征级融合的自由形式的目标跟踪使用激光扫描仪和视频
提出了一种结合多层激光扫描仪和单目视频数据的可扩展特征级传感器融合体系结构。该方法旨在通过结合低级测量特征来最大化协同效应,同时尽可能保持融合架构的通用性。在真实交通场景中发现的各种物体形状的几何建模的新概念,包括自由形式模型,提高了目标跟踪的精度。与文献中已知的鲁棒算法相比,来自真实传感器数据的结果证明了新算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信