Efficient Task-Oriented Dialogue Systems with Response Selection as an Auxiliary Task

Radostin Cholakov, T. Kolev
{"title":"Efficient Task-Oriented Dialogue Systems with Response Selection as an Auxiliary Task","authors":"Radostin Cholakov, T. Kolev","doi":"10.48550/arXiv.2208.07097","DOIUrl":null,"url":null,"abstract":"The adoption of pre-trained language models in task-oriented dialogue systems has resulted in significant enhancements of their text generation abilities. However, these architectures are slow to use because of the large number of trainable parameters and can sometimes fail to generate diverse responses. To address these limitations, we propose two models with auxiliary tasks for response selection - (1) distinguishing distractors from ground truth responses and (2) distinguishing synthetic responses from ground truth labels. They achieve state-of-the-art results on the MultiWOZ 2.1 dataset with combined scores of 107.5 and 108.3 and outperform a baseline with three times more parameters. We publish reproducible code and checkpoints and discuss the effects of applying auxiliary tasks to T5-based architectures.","PeriodicalId":405017,"journal":{"name":"International Conference on Natural Language and Speech Processing","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Natural Language and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.07097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The adoption of pre-trained language models in task-oriented dialogue systems has resulted in significant enhancements of their text generation abilities. However, these architectures are slow to use because of the large number of trainable parameters and can sometimes fail to generate diverse responses. To address these limitations, we propose two models with auxiliary tasks for response selection - (1) distinguishing distractors from ground truth responses and (2) distinguishing synthetic responses from ground truth labels. They achieve state-of-the-art results on the MultiWOZ 2.1 dataset with combined scores of 107.5 and 108.3 and outperform a baseline with three times more parameters. We publish reproducible code and checkpoints and discuss the effects of applying auxiliary tasks to T5-based architectures.
以响应选择为辅助任务的高效任务导向对话系统
在面向任务的对话系统中采用预先训练好的语言模型,大大提高了对话系统的文本生成能力。然而,这些架构使用起来很慢,因为有大量可训练的参数,有时不能产生不同的响应。为了解决这些限制,我们提出了两个具有响应选择辅助任务的模型——(1)区分干扰物和基础真值响应,(2)区分综合响应和基础真值标签。它们在MultiWOZ 2.1数据集上获得了最先进的结果,得分为107.5和108.3,并且在参数增加三倍的情况下优于基线。我们发布了可重复的代码和检查点,并讨论了将辅助任务应用于基于t5的体系结构的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信