A Statistical model for the warp matrix in super-resolution video reconstruction

G. H. Costa, J. Bermudez
{"title":"A Statistical model for the warp matrix in super-resolution video reconstruction","authors":"G. H. Costa, J. Bermudez","doi":"10.1109/ITS.2006.4433384","DOIUrl":null,"url":null,"abstract":"This paper advances in the analysis of the least mean square (LMS) algorithm applied to super-resolution reconstruction (SRR) of an image sequence. SRR of image sequences is highly dependent on the quality of the registration stage. When motion between frames is unknown and has to be estimated, the best available statistical model still requires the numerical estimation of the moments of the registration (warp) matrix. In this work we derive an analytical model for these moments for Gaussian registration errors. The new model allows for different boundary conditions. Monte Carlo simulation results illustrate the accuracy of the new analytical model.","PeriodicalId":271294,"journal":{"name":"2006 International Telecommunications Symposium","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Telecommunications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2006.4433384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper advances in the analysis of the least mean square (LMS) algorithm applied to super-resolution reconstruction (SRR) of an image sequence. SRR of image sequences is highly dependent on the quality of the registration stage. When motion between frames is unknown and has to be estimated, the best available statistical model still requires the numerical estimation of the moments of the registration (warp) matrix. In this work we derive an analytical model for these moments for Gaussian registration errors. The new model allows for different boundary conditions. Monte Carlo simulation results illustrate the accuracy of the new analytical model.
超分辨率视频重建中翘曲矩阵的统计模型
本文对应用于图像序列超分辨率重建的最小均方算法进行了分析。图像序列的SRR高度依赖于配准阶段的质量。当帧与帧之间的运动未知且需要估计时,可用的最佳统计模型仍然需要对配准(翘曲)矩阵的矩进行数值估计。在这项工作中,我们推导了高斯配准误差的这些矩的解析模型。新模型考虑了不同的边界条件。蒙特卡罗仿真结果表明了新分析模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信