Evaluation of gender classification methods on thermal and near-infrared face images

Cunjian Chen, A. Ross
{"title":"Evaluation of gender classification methods on thermal and near-infrared face images","authors":"Cunjian Chen, A. Ross","doi":"10.1109/IJCB.2011.6117544","DOIUrl":null,"url":null,"abstract":"Automatic gender classification based on face images is receiving increased attention in the biometrics community. Most gender classification systems have been evaluated only on face images captured in the visible spectrum. In this work, the possibility of deducing gender from face images obtained in the near-infrared (NIR) and thermal (THM) spectra is established. It is observed that the use of local binary pattern histogram (LBPH) features along with discriminative classifiers results in reasonable gender classification accuracy in both the NIR and THM spectra. Further, the performance of human subjects in classifying thermal face images is studied. Experiments suggest that machine-learning methods are better suited than humans for gender classification from face images in the thermal spectrum.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Automatic gender classification based on face images is receiving increased attention in the biometrics community. Most gender classification systems have been evaluated only on face images captured in the visible spectrum. In this work, the possibility of deducing gender from face images obtained in the near-infrared (NIR) and thermal (THM) spectra is established. It is observed that the use of local binary pattern histogram (LBPH) features along with discriminative classifiers results in reasonable gender classification accuracy in both the NIR and THM spectra. Further, the performance of human subjects in classifying thermal face images is studied. Experiments suggest that machine-learning methods are better suited than humans for gender classification from face images in the thermal spectrum.
热、近红外人脸图像性别分类方法评价
基于人脸图像的自动性别分类在生物识别领域受到越来越多的关注。大多数性别分类系统仅在可见光谱中捕获的面部图像上进行评估。在这项工作中,建立了从近红外(NIR)和热(THM)光谱中获得的人脸图像推断性别的可能性。结果表明,利用局部二值模式直方图(LBPH)特征和判别分类器对近红外光谱和THM光谱的性别分类均有较好的准确率。进一步,研究了人类受试者对热人脸图像的分类性能。实验表明,机器学习方法比人类更适合从热光谱的人脸图像中进行性别分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信