{"title":"Data Clustering Using Matrix Factorization Techniques for Wireless Propagation Map Reconstruction","authors":"Junting Chen, U. Mitra","doi":"10.1109/SSP.2018.8450795","DOIUrl":null,"url":null,"abstract":"This paper develops an efficient data clustering technique by transforming and compressing the measurement data to a low-dimensional feature matrix, based on which, matrix factorization techniques can be applied to extract the key parameters for data clustering. For the application of wireless propagation map reconstruction, a theoretical result is developed to justify that the feature matrix is a composite of several unimodal matrices, each containing key parameters for an individual propagation region. As a result, instead of iterating with $N$ data points at each step, the proposed scheme provides a low complexity online solution for data clustering based on the feature matrix with dimension much smaller than $N.$","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper develops an efficient data clustering technique by transforming and compressing the measurement data to a low-dimensional feature matrix, based on which, matrix factorization techniques can be applied to extract the key parameters for data clustering. For the application of wireless propagation map reconstruction, a theoretical result is developed to justify that the feature matrix is a composite of several unimodal matrices, each containing key parameters for an individual propagation region. As a result, instead of iterating with $N$ data points at each step, the proposed scheme provides a low complexity online solution for data clustering based on the feature matrix with dimension much smaller than $N.$