Brain Tumor Type Detection Using Texture Features in MR Images

Yogita K. Dubey, M. Mushrif, Komal Pisar
{"title":"Brain Tumor Type Detection Using Texture Features in MR Images","authors":"Yogita K. Dubey, M. Mushrif, Komal Pisar","doi":"10.1109/R10-HTC.2018.8629800","DOIUrl":null,"url":null,"abstract":"In this paper, the algorithms for the detection of brain tumor and then classifcation of the tumor into meningioma and glioma are proposed. Firstly, automated method is proposed for skull stripping using mathematical morphology and thresholding. Stationary wavelet transform features, Self-organizing map (SOM) and watershed algorithm are used for the segmentation of brain tumor. Gray level co- occurrence matrix (GLCM) features are extracted from tumor and feed forward neural network is used for classification. Proposed algorithm reported classification accuracy of 95% with the available dataset of real brain images from the hospital.","PeriodicalId":404432,"journal":{"name":"2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC.2018.8629800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, the algorithms for the detection of brain tumor and then classifcation of the tumor into meningioma and glioma are proposed. Firstly, automated method is proposed for skull stripping using mathematical morphology and thresholding. Stationary wavelet transform features, Self-organizing map (SOM) and watershed algorithm are used for the segmentation of brain tumor. Gray level co- occurrence matrix (GLCM) features are extracted from tumor and feed forward neural network is used for classification. Proposed algorithm reported classification accuracy of 95% with the available dataset of real brain images from the hospital.
基于磁共振图像纹理特征的脑肿瘤类型检测
本文提出了一种检测脑肿瘤并将其分类为脑膜瘤和胶质瘤的算法。首先,提出了基于数学形态学和阈值分割的颅骨剥离自动化方法。采用平稳小波变换特征、自组织映射(SOM)和分水岭算法对脑肿瘤进行分割。从肿瘤中提取灰度共生矩阵(GLCM)特征,并采用前馈神经网络进行分类。该算法在医院真实脑图像数据集上的分类准确率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信