{"title":"Optimization of Blood Microfluidic Co-Flow Devices for Dual Measurement","authors":"Amit Nayak, C. Armstrong, C. Mavriplis, M. Fenech","doi":"10.1109/MeMeA52024.2021.9478718","DOIUrl":null,"url":null,"abstract":"Microfluidics is a prominent field used to analyze small amounts of biological fluids. Co-Flow microfluidic devices can be used to study red blood cell aggregation in blood samples under a controlled shear rate. The purpose of this paper is to optimize the parameters of a co-flow device in order to produce a linear velocity profile in blood samples which would provide a constant shear rate. This is desired as the eventual goal is to use an ultrasonic measurement sensor with the co-flow microfluidic device to analyze red blood cell aggregates. Computational fluid dynamic simulations were performed to model a microfluidic device. The simulation results were verified by µPIV of the experimental microfluidic device. Modifications were made to the geometry and flow rate ratio of the microfluidic device to produce a more linear velocity profile. By using a flow rate ratio of 50:1 of shearing fluid to sheared fluid, we were able to achieve a velocity profile in the blood layer that is approximately linear.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidics is a prominent field used to analyze small amounts of biological fluids. Co-Flow microfluidic devices can be used to study red blood cell aggregation in blood samples under a controlled shear rate. The purpose of this paper is to optimize the parameters of a co-flow device in order to produce a linear velocity profile in blood samples which would provide a constant shear rate. This is desired as the eventual goal is to use an ultrasonic measurement sensor with the co-flow microfluidic device to analyze red blood cell aggregates. Computational fluid dynamic simulations were performed to model a microfluidic device. The simulation results were verified by µPIV of the experimental microfluidic device. Modifications were made to the geometry and flow rate ratio of the microfluidic device to produce a more linear velocity profile. By using a flow rate ratio of 50:1 of shearing fluid to sheared fluid, we were able to achieve a velocity profile in the blood layer that is approximately linear.