A workflow for parallel and distributed computing of large-scale genomic data

Hyun-Hwa Choi, Byoung-Seob Kim, Shinyoung Ahn, Seung-Jo Bae
{"title":"A workflow for parallel and distributed computing of large-scale genomic data","authors":"Hyun-Hwa Choi, Byoung-Seob Kim, Shinyoung Ahn, Seung-Jo Bae","doi":"10.1109/ICITST.2013.6750194","DOIUrl":null,"url":null,"abstract":"Workflow management systems are emerging as dominant solution in bioinformatics because they enable researchers to analyze the huge amount of data generated by modern laboratory equipment. The growth of genomic data generated by next generation sequencing (NGS) results in an increasing need to analyze data on distributed computer clusters. In this paper, we construct a semi-automated workflow system for the analysis of large-scale sequence data sets, describe a pipeline designed with parallel computation to perform the optimal computational steps required to analyze whole genome sequence data, and report the overall execution time of the pipeline using cores on multiple machines.","PeriodicalId":246884,"journal":{"name":"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITST.2013.6750194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Workflow management systems are emerging as dominant solution in bioinformatics because they enable researchers to analyze the huge amount of data generated by modern laboratory equipment. The growth of genomic data generated by next generation sequencing (NGS) results in an increasing need to analyze data on distributed computer clusters. In this paper, we construct a semi-automated workflow system for the analysis of large-scale sequence data sets, describe a pipeline designed with parallel computation to perform the optimal computational steps required to analyze whole genome sequence data, and report the overall execution time of the pipeline using cores on multiple machines.
大规模基因组数据并行和分布式计算的工作流程
工作流管理系统正在成为生物信息学的主导解决方案,因为它们使研究人员能够分析现代实验室设备产生的大量数据。下一代测序(NGS)产生的基因组数据的增长导致越来越需要在分布式计算机集群上分析数据。在本文中,我们构建了一个用于大规模序列数据集分析的半自动化工作流系统,描述了一个采用并行计算设计的流水线,以执行分析全基因组序列数据所需的最佳计算步骤,并在多台机器上使用内核报告流水线的总体执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信